HEISENBERG XXZ MODEL AND QUANTUM GALILEI GROUP

被引:22
作者
BONECHI, F
CELEGHINI, E
GIACHETTI, R
SORACE, E
TARLINI, M
机构
[1] UNIV BOLOGNA,DIPARTIMENTO MATEMAT,I-40126 BOLOGNA,ITALY
[2] IST NAZL FIS NUCL,FLORENCE,ITALY
来源
JOURNAL OF PHYSICS A-MATHEMATICAL AND GENERAL | 1992年 / 25卷 / 15期
关键词
D O I
10.1088/0305-4470/25/15/007
中图分类号
O4 [物理学];
学科分类号
0702 ;
摘要
The 1D Heisenberg spin model with anisotropy of the XXZ type is analysed in terms of the symmetry given by the quantum Galilei group GAMMA(q)(1). For a chain with an infinite number of sites we show that the magnon excitations and the s = 1/2, n-magnon bound states are determined by the algebra. In this case the GAMMA(q)(1) symmetry provides a description naturally compatible with the Bethe ansatz. The recurrence relations determined by GAMMA(q)(1) permit us to express the energy of the n-magnon bound states in a closed form in terms of Tchebischeff polynomials.
引用
收藏
页码:L939 / L943
页数:5
相关论文
共 13 条
[1]  
Abramowitz M.., 1972, HDB MATH FUNCTIONS
[2]   Metal theory [J].
Bethe, H. .
ZEITSCHRIFT FUR PHYSIK, 1931, 71 (3-4) :205-226
[3]  
BONECHI F, 1991, DFF1521291 U FLOR PR
[4]  
BONECHI F, DFF156392 U FLOR PRE
[5]  
CALEGHINI E, 1992, IN PRESS PHYS LETT B
[6]   THE QUANTUM HEISENBERG-GROUP H(1)Q [J].
CELEGHINI, E ;
GIACHETTI, R ;
SORACE, E ;
TARLINI, M .
JOURNAL OF MATHEMATICAL PHYSICS, 1991, 32 (05) :1155-1158
[7]   3-DIMENSIONAL QUANTUM GROUPS FROM CONTRACTIONS OF SU(2)Q [J].
CELEGHINI, E ;
GIACHETTI, R ;
SORACE, E ;
TARLINI, M .
JOURNAL OF MATHEMATICAL PHYSICS, 1990, 31 (11) :2548-2551
[8]   THE 3-DIMENSIONAL EUCLIDEAN QUANTUM GROUP E(3)Q AND ITS R-MATRIX [J].
CELEGHINI, E ;
GIACHETTI, R ;
SORACE, E ;
TARLINI, M .
JOURNAL OF MATHEMATICAL PHYSICS, 1991, 32 (05) :1159-1165
[9]  
CELEGHINI E, 1990, IN PRESS 1ST P SEM Q
[10]  
KOREPIN VE, 1992, IN PRESS QUANTUM INV