MECHANISTIC ANALYSIS OF AMMONIUM INHIBITION OF ATMOSPHERIC METHANE CONSUMPTION IN FOREST SOILS

被引:230
作者
SCHNELL, S
KING, GM
机构
关键词
D O I
10.1128/AEM.60.10.3514-3521.1994
中图分类号
Q81 [生物工程学(生物技术)]; Q93 [微生物学];
学科分类号
071005 ; 0836 ; 090102 ; 100705 ;
摘要
Methane consumption by forest soil was studied in situ and in vitro with respect to responses to nitrogen additions at atmospheric and elevated methane concentrations. Methane concentrations in intact soil decreased continuously from atmospheric levels at the surface to 0.5 ppm at a depth of 14 cm. The consumption rate of atmospheric methane in soils, however, was highest in the 4- to 8-cm depth interval (2.9 nmol per g of dry soil per day), with much lower activities below and above this zone. In contrast, extractable ammonium and nitrate concentrations were highest in the surface layer (0 to 2 cm; 22 and 1.6 mu mol per g of dry soil, respectively), as was potential ammonium-oxidizing activity (19 nmol per g of dry soil per day). The difference in zonation between ammonium oxidation and methane consumption suggested that ammonia-oxidizing bacteria did not contribute significantly to atmospheric methane consumption. Exogenous ammonium inhibited methane consumption in situ and in vitro, but the pattern of inhibition did not conform to expectations based on simple competition between ammonia and methane for methane monooxygenase. The extent of ammonium inhibition increased with increasing methane concentration. Inhibition by a single ammonium addition remained constant over a period of 39 days. In addition, nitrite, the end product of methanotrophic ammonia oxidation, was a more effective inhibitor of methane consumption than ammonium. Factors that stimulated ammonium oxidation in soil, e.g., elevated methane concentrations and the availability of cosubstrates such as formate, methanol, or beta-hydroxybutyrate, enhanced ammonium inhibition of methane oxidation, probably as a result of enhanced nitrite production.
引用
收藏
页码:3514 / 3521
页数:8
相关论文
共 46 条
[1]   METHANE CONSUMPTION IN TEMPERATE AND SUB-ARCTIC FOREST SOILS - RATES, VERTICAL ZONATION, AND RESPONSES TO WATER AND NITROGEN [J].
ADAMSEN, APS ;
KING, GM .
APPLIED AND ENVIRONMENTAL MICROBIOLOGY, 1993, 59 (02) :485-490
[2]  
BEDARD C, 1989, MICROBIOL REV, V53, P68
[3]   SPECIFIC-INHIBITION OF NITRITE OXIDATION BY CHLORATE AND ITS USE IN ASSESSING NITRIFICATION IN SOILS AND SEDIMENTS [J].
BELSER, LW ;
MAYS, EL .
APPLIED AND ENVIRONMENTAL MICROBIOLOGY, 1980, 39 (03) :505-510
[4]   KINETICS OF CH4 OXIDATION IN OXIC SOILS EXPOSED TO AMBIENT AIR OR HIGH CH4 MIXING RATIOS [J].
BENDER, M ;
CONRAD, R .
FEMS MICROBIOLOGY ECOLOGY, 1992, 101 (04) :261-270
[5]  
BORN M, 1990, Tellus Series B Chemical and Physical Meteorology, V42, P2, DOI 10.1034/j.1600-0889.1990.00002.x
[6]   INHIBITION OF METHANE OXIDATION BY AMMONIUM IN THE SURFACE-LAYER OF A LITTORAL SEDIMENT [J].
BOSSE, U ;
FRENZEL, P ;
CONRAD, R .
FEMS MICROBIOLOGY ECOLOGY, 1993, 13 (02) :123-134
[7]   A SALICYLATE-HYPOCHLORITE METHOD FOR DETERMINING AMMONIA IN SEAWATER [J].
BOWER, CE ;
HOLMHANSEN, T .
CANADIAN JOURNAL OF FISHERIES AND AQUATIC SCIENCES, 1980, 37 (05) :794-798
[8]  
CARLSEN HN, 1992, APPL MICROBIOL BIOT, V35, P124
[9]   EFFECTS OF NITROGEN-FERTILIZATION ON THE FLUXES OF N2O, CH4, AND CO2 FROM SOILS IN A FLORIDA SLASH PINE PLANTATION [J].
CASTRO, MS ;
PETERJOHN, WT ;
MELILLO, JM ;
STEUDLER, PA ;
GHOLZ, HL ;
LEWIS, D .
CANADIAN JOURNAL OF FOREST RESEARCH-REVUE CANADIENNE DE RECHERCHE FORESTIERE, 1994, 24 (01) :9-13
[10]   METHANE OXIDATION IN THE SOIL SURFACE-LAYER OF A FLOODED RICE FIELD AND THE EFFECT OF AMMONIUM [J].
CONRAD, R ;
ROTHFUSS, F .
BIOLOGY AND FERTILITY OF SOILS, 1991, 12 (01) :28-32