FIBONACCI NUMBERS AND FERMAT LAST THEOREM

被引:64
作者
SUN, ZH
SUN, ZW
机构
关键词
D O I
10.4064/aa-60-4-371-388
中图分类号
O1 [数学];
学科分类号
0701 ; 070101 ;
摘要
Let {F(n)} be the Fibonacci sequence defined by F0 = 0, F1 = 1, F(n) + 1 = F(n) + F(n-1) (n greater-than-or-equal-to 1). It is well known that F(p-)(5/p) = 0 (mod p) for any odd prime p, where (-) denotes the Legendre symbol. In 1960 D.D. Wall [13] asked whether p2/F(p-)(5/p) is always impossible; up to now this is still open. In this paper the sum [GRAPHICS] is expressed in terms of Fibonacci numbers. As applications we obtain a new formula for the Fibonacci quotient F(p-)(5/p)/p and a criterion for the relation p/F(p-1)/4 (if p = 1 (mod 4)), where p not-equal 5 is an odd prime. We also prove that the affirmative answer to Wall's question implies the first case of FLT (Fermat's last theorem); from this it follows that the first case of FLT holds for those exponents which are (odd) Fibonacci primes or Lucas primes.
引用
收藏
页码:371 / 388
页数:18
相关论文
共 12 条
  • [1] DICKSON LE, 1952, HIST THEORY NUMBERS, V1, P105
  • [2] DICKSON LE, 1952, HIST THEORY NUMBERS, V1, P393
  • [3] HARDY GH, 1981, INTRO THEORY NUMBERS, P148
  • [4] LEHMER E, 1974, J REINE ANGEW MATH, V268, P294
  • [5] MORDELL LJ, 1969, DIOPHANTINE EQUATION, P60
  • [6] RIBENBOIM P, 1979, 13 LECTURES FERMAT L, P139
  • [7] Sun Z., UNPUB
  • [8] SUN ZH, IN PRESS J NANJING U
  • [9] SUN ZW, 1992, SCI CHINA SER A, V35, P1
  • [10] Vandiier HS, 1914, J REINE ANGEW MATH, V144, P314