ON THE K-SERVER CONJECTURE

被引:158
作者
KOUTSOUPIAS, E [1 ]
PAPADIMITRIOU, CH [1 ]
机构
[1] UNIV CALIF SAN DIEGO,DEPT COMP SCI & ENGN,LA JOLLA,CA 92093
来源
JOURNAL OF THE ASSOCIATION FOR COMPUTING MACHINERY | 1995年 / 42卷 / 05期
关键词
ALGORITHMS; THEORY; PERFORMANCE; COMPETITIVE ANALYSIS; K-SERVER PROBLEM; ONLINE ALGORITHMS; POTENTIAL; QUASICONVEXITY; WORK FUNCTION;
D O I
10.1145/210118.210128
中图分类号
TP3 [计算技术、计算机技术];
学科分类号
0812 ;
摘要
We prove that the work function algorithm for the k-server problem has a competitive ratio at most 2k - 1. Manasse et al. [1988] conjectured that the competitive ratio for the k-server problem is exactly k (it is trivially at least k); previously the best-known upper bound was exponential in k. Our proof involves three crucial ingredients: A quasiconvexity property of work functions, a duality lemma that uses quasiconvexity to characterize the configuration that achieve maximum increase of the work function, and a potential function that exploits the duality lemma.
引用
收藏
页码:971 / 983
页数:13
相关论文
共 25 条
[1]   ON THE POWER OF RANDOMIZATION IN ONLINE ALGORITHMS [J].
BENDAVID, S ;
BORODIN, A ;
KARP, R ;
TARDOS, G ;
WIGDERSON, A .
ALGORITHMICA, 1994, 11 (01) :2-14
[2]  
BERMAN P, 1990, 1ST P ANN ACM SIAM S, P280
[3]  
BLUM A, 1992, 33RD P ANN S F COMP, P197
[4]  
BURLEY W, 1993, CS93319 U CAL DEP CO
[5]   ON FAST ALGORITHMS FOR 2 SERVERS [J].
CHROBAK, M ;
LARMORE, LL .
JOURNAL OF ALGORITHMS, 1991, 12 (04) :607-614
[6]   HARMONIC IS 3-COMPETITIVE FOR 2 SERVERS [J].
CHROBAK, M ;
LARMORE, LL .
THEORETICAL COMPUTER SCIENCE, 1992, 98 (02) :339-346
[7]   NEW RESULTS ON SERVER PROBLEMS [J].
CHROBAK, M ;
KARLOFF, H ;
PAYNE, T ;
VISHWANATHAN, S .
SIAM JOURNAL ON DISCRETE MATHEMATICS, 1991, 4 (02) :172-181
[8]   AN OPTIMAL ONLINE ALGORITHM FOR K-SERVERS ON TREES [J].
CHROBAK, M ;
LARMORE, LL .
SIAM JOURNAL ON COMPUTING, 1991, 20 (01) :144-148
[9]   GENEROSITY HELPS OR AN 11-COMPETITIVE ALGORITHM FOR 3 SERVERS [J].
CHROBAK, M ;
LARMORE, LL .
JOURNAL OF ALGORITHMS, 1994, 16 (02) :234-263
[10]  
CHROBAK M, 1993, 4TH P INT S ALG COMP, P406