THE THEORY OF ORTHOTROPIC VISCOELASTIC SHEAR DEFORMABLE COMPOSITE FLAT PANELS AND THEIR DYNAMIC STABILITY

被引:26
作者
CHANDIRAMANI, NK [1 ]
LIBRESCU, L [1 ]
ABOUDI, J [1 ]
机构
[1] TEL AVIV UNIV,FAC ENGN,DEPT SOLID MECH,IL-69978 TEL AVIV,ISRAEL
关键词
Beams and Girders--Stresses - Composite Materials--Viscoelasticity - Equations of Motion - Mathematical Transformations--Laplace Transforms;
D O I
10.1016/0020-7683(89)90060-7
中图分类号
O3 [力学];
学科分类号
08 ; 0801 ;
摘要
Flat plates are subjected to in-plane uni/biaxial edge load systems. In deriving the associated governing equations a Boltzmann hereditary law is used and in addition transverse shear deformation, transverse normal stress and rotatory inertia effects are incorporated. The integro-differential equations governing the stability of simply-supported flat plates are solved in the Laplace transform (LT) space in order to determine the critical in-plane edge loads yielding the asymptotic instability of flat plates. The stability analysis allows one to obtain the nature of the loss of stability, i.e. either by divergence or by flutter. Numerical applications are presented and pertinent conclusions are formulated.
引用
收藏
页码:465 / 482
页数:18
相关论文
共 17 条
[3]  
ABOUDI J, 1986, SOLID MECH ARCH, V11, P141
[4]  
Aboudi J., 1974, Computer Methods in Applied Mechanics and Engineering, V4, P349, DOI 10.1016/0045-7825(74)90011-5
[5]  
Bellman R., 1966, NUMERICAL INVERSION, DOI DOI 10.2307/2004790
[6]  
CHANDIRAMANI NK, 1987, THESIS VIRGINIA POLY
[7]  
Librescu L, 1975, ELASTOSTATICS KINETI
[8]  
LIBRESCU L, 1986, EUROMECH COLLOQUIUM, V219, P32
[9]  
Malmeister A. K., 1980, RESISTANCE POLYM COM
[10]  
MOHLENPAH AE, 1969, J APPLIED POLYM SCI, V13, P1231