NONINTERSECTION EXPONENTS FOR BROWNIAN PATHS .1. EXISTENCE AND AN INVARIANCE-PRINCIPLE

被引:25
作者
BURDZY, K [1 ]
LAWLER, GF [1 ]
机构
[1] DUKE UNIV,DEPT MATH,DURHAM,NC 27706
关键词
D O I
10.1007/BF01197892
中图分类号
O21 [概率论与数理统计]; C8 [统计学];
学科分类号
020208 ; 070103 ; 0714 ;
摘要
Let X and Y be independent 3-dimensional Brownian motions, X(0)=(0,0,0), Y(0)=(1,0,0) and let pr=P(X[0, r] {n-ary intersection}Y[0, r]=∅). Then the "non-intersection exponent" {Mathematical expression} exists and is equal to a similar "non-intersection exponent" for random walks. Analogous results hold in R2 and for more than 2 paths. © 1990 Springer-Verlag.
引用
收藏
页码:393 / 410
页数:18
相关论文
共 13 条
[1]   GEOMETRIC ANALYSIS OF PHI-4 FIELDS AND ISING-MODELS .1.2. [J].
AIZENMAN, M .
COMMUNICATIONS IN MATHEMATICAL PHYSICS, 1982, 86 (01) :1-48
[2]   ON THE CRITICAL EXPONENT FOR RANDOM-WALK INTERSECTIONS [J].
BURDZY, K ;
LAWLER, GF ;
POLASKI, T .
JOURNAL OF STATISTICAL PHYSICS, 1989, 56 (1-2) :1-12
[3]  
BURDZY K, IN PRESS ANN PROBAB
[4]  
Csorgo M., 1981, STRONG APPROXIMATION
[5]  
Doob J., 1984, GRUNDLEHREN MATH WIS
[6]   CONFORMAL-INVARIANCE AND INTERSECTIONS OF RANDOM-WALKS [J].
DUPLANTIER, B ;
KWON, KH .
PHYSICAL REVIEW LETTERS, 1988, 61 (22) :2514-2517
[7]  
DVORETZKY A., 1950, ACTA SCI MATH SZEGED, V12, P75
[8]  
Erdos P., 1960, ACTA MATH ACAD SCI H, V11, P231, DOI [10.1007/BF02020942, DOI 10.1007/BF02020942]
[9]  
LAWLER G, IN PRESS P LOND MATH
[10]   INTERSECTIONS OF RANDOM-WALKS WITH RANDOM SETS [J].
LAWLER, GF .
ISRAEL JOURNAL OF MATHEMATICS, 1989, 65 (02) :113-132