FINITE-DIFFERENCE TIME-DOMAIN MODELING OF DISPERSIVE NONLINEAR FABRY-PEROT CAVITIES

被引:10
作者
BASINGER, SA
BRADY, DJ
机构
[1] Department of Electrical and Computer Engineering, University of Illinois at Urbana-Champaign, Urbana, IL
关键词
D O I
10.1364/JOSAB.11.001504
中图分类号
O43 [光学];
学科分类号
070207 ; 0803 ;
摘要
Numerical simulations of ultrafast time-domain optical fields in nonlinear Fabry-Perot cavities are described. Thin-film cavities formed of dispersive metals and nonlinear dielectrics are modeled, and pulse-discriminating absorption is examined.
引用
收藏
页码:1504 / 1511
页数:8
相关论文
共 24 条
[1]  
Ames WF, 1977, NUMERICAL METHODS PA, V2nd
[2]  
[Anonymous], 1985, OPTICAL BISTABILITY
[3]   TRANSIENT-BEHAVIOR OF A NON-LINEAR FABRY-PEROT [J].
BISCHOFBERGER, T ;
SHEN, YR .
APPLIED PHYSICS LETTERS, 1978, 32 (03) :156-158
[4]   THEORETICAL AND EXPERIMENTAL-STUDY OF THE DYNAMIC BEHAVIOR OF A NON-LINEAR FABRY-PEROT INTERFERROMETER [J].
BISCHOFBERGER, T ;
SHEN, YR .
PHYSICAL REVIEW A, 1979, 19 (03) :1169-1176
[5]  
BISCHOFBERGER T, 1978, J OPT SOC AM, V68, P642
[6]  
Born M., 1984, PRINCIPLES OPTICS
[7]   VOLUME HOLOGRAPHIC PULSE SHAPING [J].
BRADY, D ;
CHEN, AGS ;
RODRIGUEZ, G .
OPTICS LETTERS, 1992, 17 (08) :610-612
[8]  
Chew W. C., 1995, WAVES FIELDS INHOMOG
[9]   DEGREES OF FREEDOM OF AN IMAGE [J].
DIFRANCIA, GT .
JOURNAL OF THE OPTICAL SOCIETY OF AMERICA, 1969, 59 (07) :799-+
[10]   COMPUTATIONAL MODELING OF FEMTOSECOND OPTICAL SOLITONS FROM MAXWELL EQUATIONS [J].
GOORJIAN, PM ;
TAFLOVE, A ;
JOSEPH, RM ;
HAGNESS, SC .
IEEE JOURNAL OF QUANTUM ELECTRONICS, 1992, 28 (10) :2416-2422