SYSTEMATIC CONSTRUCTION OF EFFICIENT MANY-BODY PERTURBATION-SERIES

被引:17
作者
DIETZ, K [1 ]
SCHMIDT, C [1 ]
WARKEN, M [1 ]
HESS, BA [1 ]
机构
[1] UNIV BONN,INST PHYS & THEORET CHEM,D-53115 BONN,GERMANY
关键词
D O I
10.1063/1.466886
中图分类号
O64 [物理化学(理论化学)、化学物理学];
学科分类号
070304 ; 081704 ;
摘要
A new procedure for the splitting of many-body Hamiltonians into ''free'' and ''interaction'' parts is proposed which leads to a rapidly converging perturbation expansion. The efficiency of this method is shown for the case of small molecules: Already first and second order perturbations turn out to produce very reasonable results even for excited states; higher terms rapidly converge to zero. An important point to notice is that our method allows for a priori estimates of the convergence (or divergence) behavior.
引用
收藏
页码:7421 / 7428
页数:8
相关论文
共 21 条
[1]   VARIATION-PERTURBATION EXPANSIONS AND PADE APPROXIMANTS TO ENERGY [J].
BRANDAS, E ;
GOSCINSKI, O .
PHYSICAL REVIEW A-GENERAL PHYSICS, 1970, 1 (03) :552-+
[2]   LINKED-CLUSTER EXPANSIONS FOR NUCLEAR MANY-BODY PROBLEM [J].
BRANDOW, BH .
REVIEWS OF MODERN PHYSICS, 1967, 39 (04) :771-&
[3]   ENERGY EXTRAPOLATION IN CI CALCULATIONS [J].
BUENKER, RJ ;
PEYERIMHOFF, SD .
THEORETICA CHIMICA ACTA, 1975, 39 (03) :217-228
[4]   ON THE ACCELERATION OF CONVERGENCE OF MANY-BODY PERTURBATION-THEORY .1. GENERAL-THEORY [J].
DIETZ, K ;
SCHMIDT, C ;
WARKEN, M ;
HESS, BA .
JOURNAL OF PHYSICS B-ATOMIC MOLECULAR AND OPTICAL PHYSICS, 1993, 26 (13) :1885-1896
[5]   ON THE ACCELERATION OF CONVERGENCE OF MANY-BODY PERTURBATION-THEORY .2. BENCHMARK CHECKS FOR SMALL SYSTEMS [J].
DIETZ, K ;
SCHMIDT, C ;
WARKEN, M ;
HESS, BA .
JOURNAL OF PHYSICS B-ATOMIC MOLECULAR AND OPTICAL PHYSICS, 1993, 26 (13) :1897-1914
[6]   THE ACCELERATION OF CONVERGENCE OF MANY-BODY PERTURBATION-THEORY - UNLINKED-GRAPH SHIFT IN MOLLER-PLESSET PERTURBATION-THEORY [J].
DIETZ, K ;
SCHMIDT, C ;
WARKEN, M ;
HESS, BA .
CHEMICAL PHYSICS LETTERS, 1993, 207 (2-3) :281-286
[7]   The stark effect from the point of view of Schroedinger's quantum theory [J].
Epstein, PS .
PHYSICAL REVIEW, 1926, 28 (04) :0695-0710
[8]   INVARIANCE PROPERTY OF THE BRILLOUIN-WIGNER PERTURBATION SERIES [J].
FEENBERG, E .
PHYSICAL REVIEW, 1956, 103 (04) :1116-1119
[9]   REFINEMENT OF THE BRILLOUIN-WIGNER PERTURBATION METHOD [J].
GOLDHAMMER, P ;
FEENBERG, E .
PHYSICAL REVIEW, 1956, 101 (04) :1233-1234