THE FINITE-ELEMENT METHOD FOR PARABOLIC EQUATIONS .2. A POSTERIORI ERROR ESTIMATION AND ADAPTIVE APPROACH

被引:60
作者
BIETERMAN, M
BABUSKA, I
机构
[1] UNIV MARYLAND,INST PHYS SCI & TECHNOL,COLLEGE PK,MD 20742
[2] UNIV MARYLAND,DEPT MATH,COLLEGE PK,MD 20742
关键词
D O I
10.1007/BF01396452
中图分类号
O29 [应用数学];
学科分类号
070104 ;
摘要
引用
收藏
页码:373 / 406
页数:34
相关论文
共 14 条
[1]   ANALYSIS OF OPTIMAL FINITE-ELEMENT MESHES IN R [J].
BABUSKA, I ;
RHEINBOLDT, WC .
MATHEMATICS OF COMPUTATION, 1979, 33 (146) :435-463
[2]   A POSTERIORI ERROR ANALYSIS OF FINITE-ELEMENT SOLUTIONS FOR ONE-DIMENSIONAL PROBLEMS [J].
BABUSKA, I ;
RHEINBOLDT, WC .
SIAM JOURNAL ON NUMERICAL ANALYSIS, 1981, 18 (03) :565-589
[3]  
BIETERMAN M, 1982, THESIS U MARYLAND
[4]  
BIETERMAN M, 1982, IPST BN983 U MAR TEC
[5]   NUMERICAL COMPUTATION OF FREE BOUNDARY FOR 2-DIMENSIONAL STEFAN PROBLEM BY SPACE-TIME FINITE-ELEMENTS [J].
BONNEROT, R ;
JAMET, P .
JOURNAL OF COMPUTATIONAL PHYSICS, 1977, 25 (02) :163-181
[6]   AN ADAPTIVE FINITE-ELEMENT METHOD FOR INITIAL-BOUNDARY VALUE-PROBLEMS FOR PARTIAL-DIFFERENTIAL EQUATIONS [J].
DAVIS, SF ;
FLAHERTY, JE .
SIAM JOURNAL ON SCIENTIFIC AND STATISTICAL COMPUTING, 1982, 3 (01) :6-27
[7]   GALERKIN METHODS FOR PARABOLIC EQUATIONS [J].
DOUGLAS, J ;
DUPONT, T .
SIAM JOURNAL ON NUMERICAL ANALYSIS, 1970, 7 (04) :575-&
[8]   MESH MODIFICATION FOR EVOLUTION-EQUATIONS [J].
DUPONT, T .
MATHEMATICS OF COMPUTATION, 1982, 39 (159) :85-107
[9]  
GANNON D, 1980, THESIS U ILLINOIS UR
[10]   THE MOVING FINITE-ELEMENT METHOD - APPLICATIONS TO GENERAL PARTIAL-DIFFERENTIAL EQUATIONS WITH MULTIPLE LARGE GRADIENTS [J].
GELINAS, RJ ;
DOSS, SK ;
MILLER, K .
JOURNAL OF COMPUTATIONAL PHYSICS, 1981, 40 (01) :202-249