ON THE LINEAR DIOPHANTINE PROBLEM OF FROBENIUS

被引:37
作者
DAVISON, JL [1 ]
机构
[1] LAURENTIAN UNIV,DEPT MATH & COMP SCI,SUDBURY P3E 2C6,ONTARIO,CANADA
关键词
D O I
10.1006/jnth.1994.1071
中图分类号
O1 [数学];
学科分类号
0701 ; 070101 ;
摘要
Suppose a, b, c are three positive integers with gcd = 1. We consider the function f(a, b, c) defined to be the largest integer not representable as a positive integral linear combination of a, b, c. We give a new lower bound for f(a, b, c) which is shown to be tight, and we give a new proof of a theorem due to Vitek on an upper bound. A polynomial time algorithm, based on modifications to Rodseth and Selmer/Beyer algorithms, is given for the computation of f(a, b, c). Finally, some open problems are discussed. (C) 1994 Academic Press, Inc.
引用
收藏
页码:353 / 363
页数:11
相关论文
共 12 条
[1]   On a problem of partitions [J].
Brauer, A .
AMERICAN JOURNAL OF MATHEMATICS, 1942, 64 :299-312
[2]  
BRAUER A, 1962, J REINE ANGEW MATH, V211, P215
[3]  
HEAP BR, 1964, NUMER MATH, V6, P346
[4]  
JOHNSON SM, 1960, CAN J MATH, V12, P390
[5]  
KANNAN R, CMUCS89204 CARN MELL
[6]   MINIMAL-PATH ALGORITHM FOR THE MONEY CHANGING PROBLEM [J].
NIJENHUIS, A .
AMERICAN MATHEMATICAL MONTHLY, 1979, 86 (10) :832-835
[7]   LINEAR DIOPHANTINE PROBLEM OF FROBENIUS [J].
RODSETH, OJ .
JOURNAL FUR DIE REINE UND ANGEWANDTE MATHEMATIK, 1978, 301 :171-178
[8]  
SELMER ES, 1978, J REINE ANGEW MATH, V301, P161
[9]  
Sylvester J.J., 1884, ED TIMES, V41, P21
[10]  
VITEK Y, 1975, J LOND MATH SOC, V10, P79