ITERATIVE TECHNIQUE FOR SOLUTION OF THOMAS-FERMI EQUATION UTILIZING A NONLINEAR EIGENVALUE PROBLEM

被引:11
作者
LUNING, CD [1 ]
PERRY, WL [1 ]
机构
[1] TEXAS A&M UNIV,COLLEGE STN,TX 77843
关键词
D O I
10.1090/qam/445056
中图分类号
O29 [应用数学];
学科分类号
070104 ;
摘要
引用
收藏
页码:257 / 268
页数:12
相关论文
共 25 条
[1]  
ABRAMOWITZ M, 1965, HDB MATHEMATICAL FUN
[2]   PERTURBATION CALCULATION USING THOMAS-FERMI MODEL [J].
BAESUH, Y .
PHYSICS LETTERS A, 1974, A 49 (02) :99-100
[3]   The application of the Fermi-Thomas - Statistical model to the calculation of potential distribution in positive ions [J].
Baker, EB .
PHYSICAL REVIEW, 1930, 36 (04) :0630-0647
[4]   Thomas-Fermi equation solution by the differential analyzer [J].
Bush, V ;
Caldwell, SH .
PHYSICAL REVIEW, 1931, 38 (10) :1898-1902
[5]  
COURANT R, 1953, METHODS MATHEMATICAL
[6]  
CSAVINSZ.P, 1973, B AM PHYS SOC, V18, P726
[7]   UNIVERSAL APPROXIMATE ANALYTICAL SOLUTION OF THOMAS-FERMI EQUATION FOR IONS [J].
CSAVINSZKY, P .
PHYSICAL REVIEW A, 1973, 8 (04) :1688-1701
[8]  
Davis HT., 1962, INTRO NONLINEAR DIFF
[9]  
Fermi E., 1927, REND ACCAD NAZ LINCE, V6, P602
[10]   EQUATIONS OF STATE OF ELEMENTS BASED ON THE GENERALIZED FERMI-THOMAS THEORY [J].
FEYNMAN, RP ;
METROPOLIS, N ;
TELLER, E .
PHYSICAL REVIEW, 1949, 75 (10) :1561-1573