NONLINEAR MAPPINGS ASSOCIATED WITH THE GENERALIZED LINEAR COMPLEMENTARITY-PROBLEM

被引:11
作者
EBIEFUNG, A
机构
[1] Department of Mathematics, University of Tennessee at Chattanooga, Chattanooga, 37403-2598, TN
关键词
GENERALIZED LINEAR COMPLEMENTARITY PROBLEM; PIECEWISE LINEAR SYSTEMS; MULTIPLE OBJECTIVE PROGRAMMING; VARIATIONAL INEQUALITIES; NP-COMPLETE;
D O I
10.1007/BF01585560
中图分类号
TP31 [计算机软件];
学科分类号
081202 ; 0835 ;
摘要
We show that the Cottle-Dantzig generalized linear complementarity problem (GLCP) is equivalent to a nonlinear complementarity problem (NLCP), a piecewise linear system of equations (PLS), a multiple objective programming problem (MOP), and a variational inequalities problem (VIP). On the basis of these equivalences, we provide an algorithm for solving problem GLCP.
引用
收藏
页码:255 / 268
页数:14
相关论文
共 22 条
[1]  
BENSON HP, 1978, J OPTIMIZATION THEOR, V26, P559
[2]  
CHANDRASEKARAN R, 1970, OPSEARCH, V7, P263
[3]  
Cottle R. W., 1992, LINEAR COMPLEMENTARI
[4]  
Cottle RW., 1970, J COMB THEORY, V8, P79, DOI [10.1016/S0021-9800(70)80010-2, DOI 10.1016/S0021-9800(70)80010-2]
[5]   EQUIVALENCE OF LCP AND PLS [J].
EAVES, BC ;
LEMKE, CE .
MATHEMATICS OF OPERATIONS RESEARCH, 1981, 6 (04) :475-484
[6]  
EAVES BC, 1975, MATH OPER RES, V1, P1
[7]  
EBIEFUNG A. A., 1992, RECENT ADV GLOBAL OP, P102
[8]  
Fiedler M., 1962, CZECH MATH J, V12, P382
[9]   DIRECT ALGORITHM FOR NON-LINEAR COMPLEMENTARITY PROBLEMS [J].
HABETLER, GJ ;
KOSTREVA, MM .
SIAM JOURNAL ON CONTROL AND OPTIMIZATION, 1978, 16 (03) :504-511
[10]  
Karamardian S., 1972, MATH PROGRAM, V2, P107