A MODEL FOR NONSMOOTH FREE BOUNDARIES IN HELE-SHAW FLOWS

被引:25
作者
HOHLOV, YE
HOWISON, SD
HUNTINGFORD, C
OCKENDON, JR
LACEY, AA
机构
[1] MATH INST, OXFORD OX1 3LB, ENGLAND
[2] HERIOT WATT UNIV, DEPT MATH, EDINBURGH EH14 4AS, MIDLOTHIAN, SCOTLAND
关键词
D O I
10.1093/qjmam/47.1.107
中图分类号
O29 [应用数学];
学科分类号
070104 ;
摘要
[No abstract available]
引用
收藏
页码:107 / 128
页数:22
相关论文
共 50 条
[1]   COMPUTATION OF HELE-SHAW FLOWS WITH FREE BOUNDARIES [J].
AITCHISON, JM ;
HOWISON, SD .
JOURNAL OF COMPUTATIONAL PHYSICS, 1985, 60 (03) :376-390
[2]   COEFFICIENT REGIONS FOR UNIVALENT POLYNOMIALS OF SMALL DEGREE [J].
BRANNAN, DA .
MATHEMATIKA, 1967, 14 (28P2) :165-&
[3]   MACROSCOPIC MODELS FOR SUPERCONDUCTIVITY [J].
CHAPMAN, SJ ;
HOWISON, SD ;
OCKENDON, JR .
SIAM REVIEW, 1992, 34 (04) :529-560
[4]  
CHEN X, 1992, HELESHAW PROBLEM ARE
[5]   MODELING MUSHY REGIONS [J].
CROWLEY, AB ;
OCKENDON, JR .
APPLIED SCIENTIFIC RESEARCH, 1987, 44 (1-2) :1-7
[6]   A PROOF OF THE BIEBERBACH CONJECTURE [J].
DEBRANGES, L .
ACTA MATHEMATICA, 1985, 154 (1-2) :137-152
[7]  
DUREN P. L., 1983, GRADUATE TEXTS MATH
[8]   A VARIATIONAL INEQUALITY APPROACH TO HELE-SHAW FLOW WITH A MOVING BOUNDARY [J].
ELLIOTT, CM ;
JANOVSKY, V .
PROCEEDINGS OF THE ROYAL SOCIETY OF EDINBURGH SECTION A-MATHEMATICS, 1981, 88 :93-107
[9]  
FABER TE, 1958, P ROY SOC LOND A MAT, V248, P461
[10]  
Galin L. A., 1945, DOKL AKAD NAUK SSSR, V47, P246