BEYOND THE PRIMITIVE SEPARABLE EXCHANGE APPROXIMATION IN ELECTRON-MOLECULE SCATTERING

被引:7
作者
MCCURDY, CW
RESCIGNO, TN
机构
来源
PHYSICAL REVIEW A | 1992年 / 46卷 / 01期
关键词
D O I
10.1103/PhysRevA.46.255
中图分类号
O43 [光学];
学科分类号
070207 ; 0803 ;
摘要
Separable approximations have been used in electron-molecule scattering calculations to avoid the computation of two-electron matrix elements involving continuum functions. We show that such matrix elements involving one continuum function (proportional to a spherical Bessel function at large distances) and three Gaussian functions can be reduced to a single numerical quadrature of an integral involving ordinary two-election integrals over only Gaussian functions. Using these integrals in the Kohn variational method for electron-molecule scattering allows one to avoid the limitations of a primitive separable approximation for exchange interactions by replacing it with a more stable Schwinger separable expansion. The procedure is demonstrated for electron scattering from the 2(3)S state of helium.
引用
收藏
页码:255 / 260
页数:6
相关论文
共 22 条
[1]  
ADHIKARI SK, 1975, PHYS REV C, V11, P1133, DOI 10.1103/PhysRevC.11.1133
[2]  
FLIFLET AW, 1979, ELECTRON MOL PHOTON, P87
[3]   EFFICIENT COMPUTATION OF COMPLEX ERROR FUNCTION [J].
GAUTSCHI, W .
SIAM JOURNAL ON NUMERICAL ANALYSIS, 1970, 7 (01) :187-&
[4]  
GOTTFRIED K, 1966, QUANTUM MECHANICS, P118
[5]   RIGOROUS FOUNDATION OF AN EASY-TO-APPLY APPROXIMATION METHOD FOR BOUND-STATE PROBLEMS [J].
GYARMATI, B ;
KRUPPA, AT ;
REVAI, J .
NUCLEAR PHYSICS A, 1979, 326 (01) :119-128
[6]   J-MATRIX METHOD - APPLICATION TO S-WAVE ELECTRON-HYDROGEN SCATTERING [J].
HELLER, EJ ;
YAMANI, HA .
PHYSICAL REVIEW A, 1974, 9 (03) :1209-1214
[7]   GAUSSIAN-TYPE FUNCTIONS FOR POLYATOMIC SYSTEMS .I. [J].
HUZINAGA, S .
JOURNAL OF CHEMICAL PHYSICS, 1965, 42 (04) :1293-&
[8]   PRACTICAL THEORY OF 3-PARTICLE STATES .I. NONRELATIVISTIC [J].
LOVELACE, C .
PHYSICAL REVIEW B, 1964, 135 (5B) :1225-&
[9]   COLLISIONS OF ELECTRONS WITH POLYATOMIC-MOLECULES - ELECTRON-METHANE SCATTERING BY THE COMPLEX KOHN VARIATIONAL METHOD [J].
MCCURDY, CW ;
RESCIGNO, TN .
PHYSICAL REVIEW A, 1989, 39 (09) :4487-4493
[10]   ONE-ELECTRON AND 2-ELECTRON INTEGRALS OVER CARTESIAN GAUSSIAN FUNCTIONS [J].
MCMURCHIE, LE ;
DAVIDSON, ER .
JOURNAL OF COMPUTATIONAL PHYSICS, 1978, 26 (02) :218-231