ON THE CUT POLYTOPE

被引:238
作者
BARAHONA, F
MAHJOUB, AR
机构
[1] UNIV GRENOBLE 1,INST IMAG,ARTEMIS LAB,F-38041 GRENOBLE,FRANCE
[2] UNIV BONN,INST OPERAT RES,D-5300 BONN,FED REP GER
关键词
D O I
10.1007/BF02592023
中图分类号
TP31 [计算机软件];
学科分类号
081202 ; 0835 ;
摘要
引用
收藏
页码:157 / 173
页数:17
相关论文
共 9 条
[1]   ON THE COMPUTATIONAL-COMPLEXITY OF ISING SPIN-GLASS MODELS [J].
BARAHONA, F .
JOURNAL OF PHYSICS A-MATHEMATICAL AND GENERAL, 1982, 15 (10) :3241-3253
[2]   FACETS OF THE BIPARTITE SUBGRAPH POLYTOPE [J].
BARAHONA, F ;
GROTSCHEL, M ;
MAHJOUB, AR .
MATHEMATICS OF OPERATIONS RESEARCH, 1985, 10 (02) :340-358
[3]   THE MAX-CUT PROBLEM ON GRAPHS NOT CONTRACTIBLE TO K5 [J].
BARAHONA, F .
OPERATIONS RESEARCH LETTERS, 1983, 2 (03) :107-111
[4]  
Garey MR., 1979, COMPUTERS INTRACTABI
[5]   A POLYNOMIAL ALGORITHM FOR THE MAX-CUT PROBLEM ON GRAPHS WITHOUT LONG ODD CYCLES [J].
GROTSCHEL, M ;
NEMHAUSER, GL .
MATHEMATICAL PROGRAMMING, 1984, 29 (01) :28-40
[6]   THE ELLIPSOID METHOD AND ITS CONSEQUENCES IN COMBINATORIAL OPTIMIZATION [J].
GROTSCHEL, M ;
LOVASZ, L ;
SCHRIJVER, A .
COMBINATORICA, 1981, 1 (02) :169-197
[7]  
Hadlock F., 1975, SIAM Journal on Computing, V4, P221, DOI 10.1137/0204019
[8]  
Harary F., 1953, MICHIGAN MATH J, V2, P143, DOI https://doi.org/10.1307/mmj/1028989917
[9]  
Seymour P. D., 1981, European Journal of Combinatorics, V2, P257