GLOBALLY CONVERGENT NEWTON METHODS FOR NONSMOOTH EQUATIONS

被引:48
作者
HAN, SP [1 ]
PANG, JS [1 ]
RANGARAJ, N [1 ]
机构
[1] INDIAN INST TECHNOL,DEPT MECH ENGN,BOMBAY 400076,INDIA
关键词
NONSMOOTH FUNCTIONS; NEWTON METHODS; GLOBAL CONVERGENCE; NONLINEAR PROGRAMS; COMPLEMENTARITY PROBLEMS; VARIATIONAL INEQUALITY PROBLEMS;
D O I
10.1287/moor.17.3.586
中图分类号
C93 [管理学]; O22 [运筹学];
学科分类号
070105 ; 12 ; 1201 ; 1202 ; 120202 ;
摘要
This paper presents some globally convergent descent methods for solving systems of nonlinear equations defined by locally Lipschitzian functions. These methods resemble the well-known family of damped Newton and Gauss-Newton methods for solving systems of smooth equations; they generalize some recent Newton-like methods for solving B-differentiable equations which arise from various mathematical programs.
引用
收藏
页码:586 / 607
页数:22
相关论文
共 15 条
[1]  
Clarke F.H., 1983, OPTIMIZATION NONSMOO
[2]  
Cottle R.W., 1970, J COMB THEORY A, V8, P79, DOI 10.1016/S0021-9800(70)80010-2
[3]  
Eaves B. C., 1976, Mathematics of Operations Research, V1, P1, DOI 10.1287/moor.1.1.1
[4]  
EAVES BC, 1974, MATH PROGRAMMING STU, V1, P96, DOI DOI 10.1126/SCIENCE.1150769
[5]  
GWINNER J, 1976, LECTURE NOTES EC MAT, V117, P99
[6]  
Harker P.T., 1990, LECT APPL MATH, V26, P265, DOI DOI 10.1007/978-3-662-12629-5_
[7]   NEWTONS METHOD FOR THE NONLINEAR COMPLEMENTARITY-PROBLEM - A B-DIFFERENTIABLE EQUATION APPROACH [J].
HARKER, PT ;
XIAO, BC .
MATHEMATICAL PROGRAMMING, 1990, 48 (03) :339-357
[8]   EXTENSION OF NEWTON AND QUASI-NEWTON METHODS TO SYSTEMS OF PC1 EQUATIONS [J].
KOJIMA, M ;
SHINDO, S .
JOURNAL OF THE OPERATIONS RESEARCH SOCIETY OF JAPAN, 1986, 29 (04) :352-375
[9]  
Kummer B., 1988, ADV MATH OPTIMIZATIO, V45, P114
[10]  
MURTY KG, 1988, LINEAR COMBINATORIAL