PREDICTING INDIAN MONSOON RAINFALL - A NEURAL-NETWORK APPROACH

被引:32
作者
NAVONE, HD
CECCATTO, HA
机构
[1] CONSEJO NACL INVEST CIENT & TECN,INST FIS ROSARIO,BVD 27 FEBRERO 210 BIS,RA-2000 ROSARIO,ARGENTINA
[2] UNIV NACL ROSARIO,RA-2000 ROSARIO,ARGENTINA
关键词
D O I
10.1007/s003820050050
中图分类号
P4 [大气科学(气象学)];
学科分类号
0706 ; 070601 ;
摘要
The summer monsoon rainfall over India is predicted by using neural networks. These computational structures are used as a nonlinear method to correlate preseason predictors to rainfall data, and as an algorithm for reconstruction of the rainfall time-series intrinsic dynamics. A combined approach is developed which captures the information built into both the stochastic approach based on suitable predictors and the deterministic dynamical model of the time series. The hierarchical network so obtained has forecasting capabilities remarkably improved with respect to conventional methods.
引用
收藏
页码:305 / 312
页数:8
相关论文
共 31 条
[1]  
[Anonymous], 1988, CONTINUOUS VALUED NE
[2]  
BASU S, 1992, P INDIAN AS-EARTH, V101, P27
[3]  
Cybenko G., 1989, Mathematics of Control, Signals, and Systems, V2, P303, DOI 10.1007/BF02551274
[4]  
DAS PK, 1987, MONSOONS, P549
[5]  
ELSNER JB, 1992, B AM METEOROL SOC, V73, P49, DOI 10.1175/1520-0477(1992)073<0049:NPCAN>2.0.CO
[6]  
2
[7]  
FARMER JD, 1988, UR88901 LOS AL NAT L
[8]  
Gowariker V., 1991, Mausam, V42, P125
[9]  
Gowariker V., 1989, Mausam, V40, P115
[10]  
HASTENRATH S, 1987, J CLIM APPL METEOROL, V26, P847, DOI 10.1175/1520-0450(1987)026<0847:OTPOIM>2.0.CO