COUPLED MAPS ON FRACTAL LATTICES

被引:56
作者
COSENZA, MG
KAPRAL, R
机构
[1] Chemical Physics Theory Group, Department of Chemistry, University of Toronto, Toronto
来源
PHYSICAL REVIEW A | 1992年 / 46卷 / 04期
关键词
D O I
10.1103/PhysRevA.46.1850
中图分类号
O43 [光学];
学科分类号
070207 ; 0803 ;
摘要
A fractal array of coupled maps, where space is nonuniform, is considered as a dynamical system. The stability and bifurcations of spatially synchronized, periodic states on the Sierpinski gasket axe studied. The matrix that expresses the coupling among neighboring elements exhibits a spectrum of eigenvalues with multifractal properties, and their global scaling behavior is characterized by the function f(alpha). The multifractal character of the eigenvalues affects the stability boundaries of the synchronized, periodic state-s in the parameter plane of the system. The boundary structure allows access to regions of stability and gives rise to bifurcations that are not present in regular lattices.
引用
收藏
页码:1850 / 1858
页数:9
相关论文
共 28 条
[1]  
ALEXANDER S, 1982, J PHYS LETT-PARIS, V43, pL625, DOI 10.1051/jphyslet:019820043017062500
[2]  
Avnir D., 1989, FRACTAL APPROACH HET
[3]   THE DEVILS STAIRCASE [J].
BAK, P .
PHYSICS TODAY, 1986, 39 (12) :38-45
[4]   A MODEL FOR FAST COMPUTER-SIMULATION OF WAVES IN EXCITABLE MEDIA [J].
BARKLEY, D .
PHYSICA D, 1991, 49 (1-2) :61-70
[5]   SPIRAL-WAVE DYNAMICS IN A SIMPLE-MODEL OF EXCITABLE MEDIA - THE TRANSITION FROM SIMPLE TO COMPOUND ROTATION [J].
BARKLEY, D ;
KNESS, M ;
TUCKERMAN, LS .
PHYSICAL REVIEW A, 1990, 42 (04) :2489-2492
[6]   THE ENTROPY FUNCTION FOR CHARACTERISTIC EXPONENTS [J].
BOHR, T ;
RAND, D .
PHYSICA D, 1987, 25 (1-3) :387-398
[7]  
BOHR T, 1989, NEW TRENDS NONLINEAR
[8]  
CRUTCHFIELD JP, 1987, DIRECTIONS CHAOS, V1
[9]   EARLY STAGES OF SPINODAL DECOMPOSITION FOR THE CAHN-HILLIARD-COOK MODEL OF PHASE-SEPARATION [J].
ELDER, KR ;
ROGERS, TM ;
DESAI, RC .
PHYSICAL REVIEW B, 1988, 38 (07) :4725-4739
[10]   QUANTITATIVE UNIVERSALITY FOR A CLASS OF NON-LINEAR TRANSFORMATIONS [J].
FEIGENBAUM, MJ .
JOURNAL OF STATISTICAL PHYSICS, 1978, 19 (01) :25-52