RITZ-TREFFTZ METHOD FOR STATE AND CONTROL CONSTRAINED OPTIMAL CONTROL PROBLEMS

被引:25
作者
HAGER, WW [1 ]
机构
[1] UNIV S FLORIDA,DEPT MATH,TAMPA,FL 33620
关键词
D O I
10.1137/0712063
中图分类号
O29 [应用数学];
学科分类号
070104 ;
摘要
引用
收藏
页码:854 / 867
页数:14
相关论文
共 13 条
[1]  
AUBIN J.-P., 1972, APPROXIMATION ELLIPT
[2]  
BOSARGE WE, 1973, SIAM J NUMER ANAL, V10, P94, DOI 10.1137/0710011
[3]  
BRYSON A, 1969, APPLIED OPTIMAL CONT
[4]  
HAGER WW, 1974, THESIS MASS I TECH
[5]  
HAGER WW, TO BE PUBLISHED
[6]   A TRANSFORMATION TECHNIQUE FOR OPTIMAL CONTROL PROBLEMS WITH A STATE VARIABLE INEQUALITY CONSTRAINT [J].
JACOBSON, DH ;
LELE, MM .
IEEE TRANSACTIONS ON AUTOMATIC CONTROL, 1969, AC14 (05) :457-+
[7]   A PROOF OF CONVERGENCE OF KELLEY-BRYSON PENALTY FUNCTION TECHNIQUE FOR STATE-CONSTRAINED CONTROL PROBLEMS [J].
LELE, MM ;
JACOBSON, DH .
JOURNAL OF MATHEMATICAL ANALYSIS AND APPLICATIONS, 1969, 26 (01) :163-&
[8]   ON REGULARITY OF SOLUTION OF A CARIATIONAL INEQUALITY [J].
LEWY, H ;
STAMPACCHIA, G .
COMMUNICATIONS ON PURE AND APPLIED MATHEMATICS, 1969, 22 (02) :153-+
[9]  
LUENBERGER DG, 1973, INTRO LINEAR NONLINE, P285
[10]   ONE-SIDED APPROXIMATION AND VARIATIONAL INEQUALITIES [J].
MOSCO, U ;
STRANG, G .
BULLETIN OF THE AMERICAN MATHEMATICAL SOCIETY, 1974, 80 (02) :308-312