ON THE STABILITY OF FRAMES AND RIESZ BASES

被引:130
作者
FAVIER, SJ [1 ]
ZALIK, RA [1 ]
机构
[1] AUBURN UNIV, DEPT MATH, AUBURN, AL 36849 USA
关键词
D O I
10.1006/acha.1995.1012
中图分类号
O29 [应用数学];
学科分类号
070104 ;
摘要
The first part of this paper supplements the recent work of Heil and Christensen on the stability of frames in Banach and Hilbert spaces. After obtaining a multivariate version of Kadec's 1/4-theorem (which is used in the sequel), two of Christensen's results, Chui and Shi's Second Oversampling Theorem, and a variety of other results and techniques are applied to study the stability of multivariate exponential, wavelet, and Gabor frame and Riesz bases. Specific frame bounds and quantitative conditions of validity for mother wavelet and sampling perturbations are given. (C) 1995 Academic Press, Inc.
引用
收藏
页码:160 / 173
页数:14
相关论文
共 40 条
[1]   CONTINUOUS FRAMES IN HILBERT-SPACE [J].
ALI, ST ;
ANTOINE, JP ;
GAZEAU, JP .
ANNALS OF PHYSICS, 1993, 222 (01) :1-37
[2]  
Benedetto J.J., 1992, WAVELETS TUTORIAL TH, P445
[3]  
Benedetto J. J., 1994, WAVELETS MATH APPL, P97
[4]  
Christensen O., 1993, Applied and Computational Harmonic Analysis, V1, P50, DOI 10.1006/acha.1993.1004
[5]   FRAME PERTURBATIONS [J].
CHRISTENSEN, O .
PROCEEDINGS OF THE AMERICAN MATHEMATICAL SOCIETY, 1995, 123 (04) :1217-1220
[6]  
CHRISTENSEN O, IN PRESS P AM MATH S
[7]  
CHRISTENSEN O, 1994, PERTURBATIONS BANACH
[8]  
CHRISTENSEN O, 1994, MOMENT PROBLEMS STAB
[9]  
Chui C. K., 1993, Applied and Computational Harmonic Analysis, V1, P29, DOI 10.1006/acha.1993.1003
[10]  
CHUI CK, 1994, P AM MATH SOC, V121, P511