HIGHER-ORDER IMPLICIT STRONG NUMERICAL SCHEMES FOR STOCHASTIC DIFFERENTIAL-EQUATIONS

被引:107
作者
KLOEDEN, PE
PLATEN, E
机构
[1] KARL WEIERSTRASS INST MATH,W-1086 BERLIN,GERMANY
[2] AUSTRALIAN NATL UNIV,SMS,SRS,CANBERRA,ACT 2605,AUSTRALIA
关键词
STIFF STOCHASTIC DIFFERENTIAL EQUATIONS; NUMERICAL SIMULATIONS; STRONG ORDER OF CONVERGENCE; IMPLICIT AND FULLY IMPLICIT SCHEMES; STOCHASTIC TAYLOR FORMULA;
D O I
10.1007/BF01060070
中图分类号
O4 [物理学];
学科分类号
0702 ;
摘要
Higher-order implicit numerical methods which are suitable for stiff stochastic differential equations are proposed. These are based on a stochastic Taylor expansion and converge strongly to the corresponding solution of the stochastic differential equation as the time step size converges to zero. The regions of absolute stability of these implicit and related explicit methods are also examined.
引用
收藏
页码:283 / 314
页数:32
相关论文
共 25 条
[1]  
ARNOLD L, 1986, SPRINGER LECTURE NOT, V1186
[2]  
Arnold L., 1974, STOCHASTIC DIFFERENT
[3]  
CHANG CC, 1987, MATH COMPUT, V49, P523, DOI 10.1090/S0025-5718-1987-0906186-6
[4]  
Dahlquist G. G., 1963, BIT, V3, P27, DOI DOI 10.1007/BF01963532
[5]  
DRUMMOND PD, IN PRESS J COMPUT PH
[6]  
GREINER A, 1987, J STAT PHYS, V51, P95
[7]  
Has'minskii RZ., 1980, STOCHASTIC STABILITY
[8]  
HERNANDEZ DB, 1989, NUMERICAL STABILITY
[9]   NUMERICAL-INTEGRATION OF MULTIPLICATIVE-NOISE STOCHASTIC DIFFERENTIAL-EQUATIONS [J].
KLAUDER, JR ;
PETERSEN, WP .
SIAM JOURNAL ON NUMERICAL ANALYSIS, 1985, 22 (06) :1153-1166
[10]   STRATONOVICH AND ITO STOCHASTIC TAYLOR EXPANSIONS [J].
KLOEDEN, PE ;
PLATEN, E .
MATHEMATISCHE NACHRICHTEN, 1991, 151 :33-50