RARS AND RXRS - EVIDENCE FOR 2 AUTONOMOUS TRANSACTIVATION FUNCTIONS (AF-1 AND AF-2) AND HETERODIMERIZATION INVIVO

被引:291
作者
NAGPAL, S [1 ]
FRIANT, S [1 ]
NAKSHATRI, H [1 ]
CHAMBON, P [1 ]
机构
[1] FAC MED STRASBOURG,INST CHIM BIOL,CNRS,GENET MOLEC EUCARYOTES LAB,INSERM,F-67085 STRASBOURG,FRANCE
关键词
AF-1; AF-2; AUTONOMOUS TRANSACTIVATION FUNCTIONS; HETERODIMERIZATION; RETINOIC ACID RECEPTORS;
D O I
10.1002/j.1460-2075.1993.tb05889.x
中图分类号
Q5 [生物化学]; Q7 [分子生物学];
学科分类号
071010 ; 081704 ;
摘要
We have previously reported that the AB regions of retinoic acid receptors (RARs and RXRs) contain a transcriptional activation function capable of modulating the activity of the ligand-dependent activation function present in the C-terminal DE regions of these receptors. However, we could not demonstrate that these AB regions possess an autonomous activation function similar to the AF-1s found in the AB regions of steroid hormone receptors. Using the mouse CRBPII promoter as a reporter gene, we now report that the AB regions of RARalpha, beta and gamma, as well as those of RXRalpha and gamma, contain an autonomous, ligand-independent activation function, AF-1, which can efficiently synergize with AF-2s. Moreover, AF-1s account for the ligand-independent, constitutive activation of transcription by RXRalpha and gamma. We also show that RARs and RXRs preferentially heterodimerize in solution in cultured cells in vivo, through the dimerization interface present in their E region, irrespective of the presence of all-trans or 9-cis retinoic acid. Furthermore, our results indicate that homodimeric interactions are not observed in cultured cells in vivo under conditions where heterodimeric interactions readily occur, which is in agreement with previous observations showing the preferential binding of RAR-RXR heterodimers to RA response elements in vitro.
引用
收藏
页码:2349 / 2360
页数:12
相关论文
共 46 条
[1]   RETINOIC ACID RECEPTORS AND RETINOID X-RECEPTORS - INTERACTIONS WITH ENDOGENOUS RETINOIC ACIDS [J].
ALLENBY, G ;
BOCQUEL, MT ;
SAUNDERS, M ;
KAZMER, S ;
SPECK, J ;
ROSENBERGER, M ;
LOVEY, A ;
KASTNER, P ;
GRIPPO, JF ;
CHAMBON, P ;
LEVIN, AA .
PROCEEDINGS OF THE NATIONAL ACADEMY OF SCIENCES OF THE UNITED STATES OF AMERICA, 1993, 90 (01) :30-34
[2]   GENE-REGULATION BY STEROID-HORMONES [J].
BEATO, M .
CELL, 1989, 56 (03) :335-344
[3]   HETERODIMERIZATION AMONG THYROID-HORMONE RECEPTOR, RETINOIC ACID RECEPTOR, RETINOID-X RECEPTOR, CHICKEN OVALBUMIN UPSTREAM PROMOTER TRANSCRIPTION FACTOR, AND AN ENDOGENOUS LIVER PROTEIN [J].
BERRODIN, TJ ;
MARKS, MS ;
OZATO, K ;
LINNEY, E ;
LAZAR, MA .
MOLECULAR ENDOCRINOLOGY, 1992, 6 (09) :1468-1478
[4]   IDENTIFICATION OF A 2ND HUMAN RETINOIC ACID RECEPTOR [J].
BRAND, N ;
PETKOVICH, M ;
KRUST, A ;
CHAMBON, P ;
DETHE, H ;
MARCHIO, A ;
TIOLLAIS, P ;
DEJEAN, A .
NATURE, 1988, 332 (6167) :850-853
[5]   RXR-ALPHA, A PROMISCUOUS PARTNER OF RETINOIC ACID AND THYROID-HORMONE RECEPTORS [J].
BUGGE, TH ;
POHL, J ;
LONNOY, O ;
STUNNENBERG, HG .
EMBO JOURNAL, 1992, 11 (04) :1409-1418
[6]  
DE LUCA LM, 1991, FASEB J, V5, P2924
[7]   ALL-TRANS AND 9-CIS RETINOIC ACID INDUCTION OF CRABPII TRANSCRIPTION IS MEDIATED BY RAR-RXR HETERODIMERS BOUND TO DR1 AND DR2 REPEATED MOTIFS [J].
DURAND, B ;
SAUNDERS, M ;
LEROY, P ;
LEID, M ;
CHAMBON, P .
CELL, 1992, 71 (01) :73-85
[8]   THE STEROID AND THYROID-HORMONE RECEPTOR SUPERFAMILY [J].
EVANS, RM .
SCIENCE, 1988, 240 (4854) :889-895
[9]   INTERACTIONS AMONG A SUBFAMILY OF NUCLEAR HORMONE RECEPTORS - THE REGULATORY ZIPPER MODEL [J].
FORMAN, BM ;
SAMUELS, HH .
MOLECULAR ENDOCRINOLOGY, 1990, 4 (09) :1293-1301
[10]   ESTRADIOL INDUCTION OF A GLUCOCORTICOID-RESPONSIVE GENE BY A CHIMERIC RECEPTOR [J].
GREEN, S ;
CHAMBON, P .
NATURE, 1987, 325 (6099) :75-78