THE COHOMOLOGY OF INVARIANT VARIATIONAL BICOMPLEXES

被引:24
作者
ANDERSON, IM
POHJANPELTO, J
机构
[1] UTAH STATE UNIV,DEPT MATH,LOGAN,UT 84322
[2] OREGON STATE UNIV,DEPT MATH,CORVALLIS,OR 97331
关键词
INVERSE PROBLEM OF CALCULUS OF VARIATIONS; GROUP ACTIONS; LIE ALGEBRA COHOMOLOGY;
D O I
10.1007/BF00996103
中图分类号
O29 [应用数学];
学科分类号
070104 ;
摘要
Let pi: E --> M be a fiber bundle and let Gamma be an infinitesimal Lie transformation group acting on E. We announce various new results concerning the cohomology of the Gamma invariant variational bicomplex (Omega(Gamma)*,*(J(infinity)(E)),d(H), d(V)) and the associated Gamma invariant Euler-Lagrange complex. As one application of our general theory, we completely solve the local invariant inverse problem of the calculus of variations for finite-dimensional infinitesimal Lie transformation groups.
引用
收藏
页码:3 / 19
页数:17
相关论文
共 24 条
[1]   NATURAL VARIATIONAL-PRINCIPLES ON RIEMANNIAN-MANIFOLDS [J].
ANDERSON, IM .
ANNALS OF MATHEMATICS, 1984, 120 (02) :329-370
[2]  
ANDERSON IM, IN PRESS VARIATIONAL
[3]  
Anderson IM., 1992, VARIATIONAL BICOMPLE, V132, P51
[4]  
[Anonymous], [No title captured]
[5]  
BOTT R, 1973, 11TH HOL S NEW MEX S
[6]   HIGHER-ORDER CONSERVATION-LAWS AND A HIGHER-ORDER NOETHERS THEOREM [J].
CHEUNG, WS .
ADVANCES IN APPLIED MATHEMATICS, 1987, 8 (04) :446-485
[7]   SYMMETRY REDUCTION FOR THE KADOMTSEV-PETVIASHVILI EQUATION USING A LOOP ALGEBRA [J].
DAVID, D ;
KAMRAN, N ;
LEVI, D ;
WINTERNITZ, P .
JOURNAL OF MATHEMATICAL PHYSICS, 1986, 27 (05) :1225-1237
[8]  
Fuks D. B., 1986, COHOMOLOGY INFINITE
[9]  
Gromov M., 1986, PARTIAL DIFFERENTIAL
[10]  
HILON PJ, 1971, COURSE HOMOLOGICAL A