STABLE GALERKIN METHODS FOR HYPERBOLIC SYSTEMS

被引:8
作者
LAYTON, WJ
机构
关键词
D O I
10.1137/0720015
中图分类号
O29 [应用数学];
学科分类号
070104 ;
摘要
引用
收藏
页码:221 / 233
页数:13
相关论文
共 26 条
[1]  
Adams R.A., 2003, PURE APPL MATH SOB O, V2nd ed.
[2]  
Bazaraa MS., 2008, LINEAR PROGRAMMING N
[3]  
Butzer P.L., 1967, SEMIGROUPS OPERATORS
[4]   GALERKIN METHODS FOR FIRST-ORDER HYPERBOLICS - EXAMPLE [J].
DUPONT, T .
SIAM JOURNAL ON NUMERICAL ANALYSIS, 1973, 10 (05) :890-899
[5]   FINITE ELEMENT APPROXIMATIONS TO TIME-DEPENDENT PROBLEMS [J].
FIX, G ;
NASSIF, N .
NUMERISCHE MATHEMATIK, 1972, 19 (02) :127-&
[6]   SYMMETRIC HYPERBOLIC LINEAR DIFFERENTIAL EQUATIONS [J].
FRIEDRICHS, KO .
COMMUNICATIONS ON PURE AND APPLIED MATHEMATICS, 1954, 7 (02) :345-392
[7]   BOUNDARY-CONDITIONS FOR HYPERBOLIC DIFFERENCE SCHEMES [J].
GARY, J .
JOURNAL OF COMPUTATIONAL PHYSICS, 1978, 26 (03) :339-351
[8]   ENERGY CONSERVING NORMS FOR THE SOLUTION OF HYPERBOLIC SYSTEMS OF PARTIAL-DIFFERENTIAL EQUATIONS [J].
GUNZBURGER, MD ;
PLEMMONS, RJ .
MATHEMATICS OF COMPUTATION, 1979, 33 (145) :1-10
[9]  
GUSTAFSSON B, 1972, MATH COMPUT, V26, P649, DOI 10.1090/S0025-5718-1972-0341888-3
[10]   NUMERICAL SOLUTION OF SYMMETRIC POSITIVE DIFFERENTIAL EQUATIONS [J].
KATSANIS, T .
MATHEMATICS OF COMPUTATION, 1968, 22 (104) :763-&