COMPLETELY POSITIVE MAPS AND ENTROPY INEQUALITIES

被引:444
作者
LINDBLAD, G [1 ]
机构
[1] ROY INST TECHNOL, DEPT THEORET PHYS, S-10044 STOCKHOLM 70, SWEDEN
关键词
D O I
10.1007/BF01609396
中图分类号
O4 [物理学];
学科分类号
0702 ;
摘要
引用
收藏
页码:147 / 151
页数:5
相关论文
共 11 条
[1]  
Arveson W., 1969, ACTA MATH, V123, P141, DOI [DOI 10.1007/BF02392388, 10.1007/BF02392388]
[2]   AN OPERATIONAL APPROACH TO QUANTUM PROBABILITY [J].
DAVIES, EB ;
LEWIS, JT .
COMMUNICATIONS IN MATHEMATICAL PHYSICS, 1970, 17 (03) :239-&
[3]  
DIXMIER J, 1969, C ALGEBRES LEUR REPR
[4]   REMARKS ON 2 THEOREMS OF E LIEB [J].
EPSTEIN, H .
COMMUNICATIONS IN MATHEMATICAL PHYSICS, 1973, 31 (04) :317-325
[5]   ALGEBRAIC APPROACH TO QUANTUM FIELD THEORY [J].
HAAG, R ;
KASTLER, D .
JOURNAL OF MATHEMATICAL PHYSICS, 1964, 5 (07) :848-&
[6]  
KULLBACK S, 1959, INFORMATION THEORY S
[7]   PROOF OF STRONG SUBADDITIVITY OF QUANTUM-MECHANICAL ENTROPY [J].
LIEB, EH ;
RUSKAI, MB .
JOURNAL OF MATHEMATICAL PHYSICS, 1973, 14 (12) :1938-1941
[8]   CONVEX TRACE FUNCTIONS AND WIGNER-YANASE-DYSON CONJECTURE [J].
LIEB, EH .
ADVANCES IN MATHEMATICS, 1973, 11 (03) :267-288
[9]  
LINDBLAD G, 1974, EXPECTATIONS ENTROPY
[10]  
Stinespring W. F., 1955, P AM MATH SOC, V6, P211, DOI DOI 10.1090/S0002-9939-1955-0069403-4