CONGRUENCE PROPERTIES OF Q-ANALOGS

被引:38
作者
SAGAN, BE
机构
[1] Department of Mathematics, Michigan State University, East Lansing
基金
美国国家科学基金会;
关键词
D O I
10.1016/0001-8708(92)90046-N
中图分类号
O1 [数学];
学科分类号
0701 ; 070101 ;
摘要
Using group actions and generating functions, we derive various arithmetic properties of the q-binomial coefficients and q-Stirling numbers. These include recurrence relations and computation of residues modulo a cyclotomic polynomial. We also obtain periodicity and non-periodicity results. © 1992.
引用
收藏
页码:127 / 143
页数:17
相关论文
共 30 条
[1]   DIVISIBILITY PROPERTIES OF Q-TANGENT NUMBERS [J].
ANDREWS, GE ;
GESSEL, I .
PROCEEDINGS OF THE AMERICAN MATHEMATICAL SOCIETY, 1978, 68 (03) :380-384
[2]  
BLASS A, GAUSSIAN COEFFICIENT
[3]   Q-BERNOULLI NUMBERS AND POLYNOMIALS [J].
CARLITZ, L .
DUKE MATHEMATICAL JOURNAL, 1948, 15 (04) :987-1000
[4]   On Abelian fields [J].
Carlitz, Leonard .
TRANSACTIONS OF THE AMERICAN MATHEMATICAL SOCIETY, 1933, 35 (1-4) :122-136
[5]  
COLLINS KL, 1991, ARS COMBINATORIA, V31, P31
[6]  
DAVIS KS, IN PRESS EUROPEAN J
[7]  
Desarmenien J., 1982, EUROPEAN J COMBIN, V3, P19
[9]   CONGRUENCE PROPERTIES OF ORDINARY AND Q-BINOMIAL COEFFICIENTS [J].
FRAY, RD .
DUKE MATHEMATICAL JOURNAL, 1967, 34 (03) :467-&
[10]   Q-COUNTING ROOK CONFIGURATIONS AND A FORMULA OF FROBENIUS [J].
GARSIA, AM ;
REMMEL, JB .
JOURNAL OF COMBINATORIAL THEORY SERIES A, 1986, 41 (02) :246-275