BOUNDARY-VALUE-PROBLEMS OF THE GINZBURG-LANDAU EQUATIONS

被引:20
作者
YANG, YS [1 ]
机构
[1] UNIV MASSACHUSETTS,DEPT MATH & STAT,AMHERST,MA 01003
关键词
D O I
10.1017/S0308210500024471
中图分类号
O29 [应用数学];
学科分类号
070104 ;
摘要
For a domain Ω in the Euclidean space Rd (d = 2, 3) existence of weak solutions for both interior and exterior Dirichlet boundary value problems of the Ginzburg-Landau equations are established without any restriction on the range of the coupling constant λ, the size of Ω, or the boundary data. For the critical choice λ = 1, we prove the existence of confined multivortices in a bounded domain by a constructive monotone iteration method. © 1990, Royal Society of Edinburgh. All rights reserved.
引用
收藏
页码:355 / 365
页数:11
相关论文
共 21 条
[1]  
AHARANOV Y, 1969, PHYS REV, V123, P1511
[2]   SIGNIFICANCE OF ELECTROMAGNETIC POTENTIALS IN THE QUANTUM THEORY [J].
AHARONOV, Y ;
BOHM, D .
PHYSICAL REVIEW, 1959, 115 (03) :485-491
[3]  
[Anonymous], 1969, MATH THEORY VISCOUS
[4]  
BOGOMOLNYI EB, 1976, SOV J NUCL PHYS+, V24, P449
[5]  
CARROLL RW, 1964, ARCH RATION MECH AN, V16, P373
[6]  
FELSAGER B, 1983, GEOMETRY PARTICLES F
[7]  
Gilbarg D., 1977, ELLIPTIC PARTIAL DIF, V224
[8]  
JACOBS L, 1978, PHYS REV B, V19, P4486
[9]  
Jaffe A., 1980, VORTICES MONOPOLES S
[10]  
KLIMOV VS, 1982, TEOR MAT FIZ, V50, P383