A NUMERICAL STUDY OF THE VISCOUS SUPERSONIC-FLOW PAST A FLAT-PLATE AT LARGE ANGLES OF INCIDENCE

被引:5
作者
DRIKAKIS, D
DURST, F
机构
[1] Lehrstuhl für Strömungsmechanik, Universität Erlangen-Nürnberg, D-91058 Erlangen
关键词
D O I
10.1063/1.868269
中图分类号
O3 [力学];
学科分类号
08 ; 0801 ;
摘要
A numerical study of the viscous supersonic flow past a flat plate is presented. The objective is to investigate the supersonic flow at high angles of incidence where large flow gradients occur. The effect of the angle of incidence and the Reynolds number (Re) in the flow structure especially in the formation of the separation region is investigated. The study is based on the solution of the full Navier-Stokes equations by high resolution schemes, and it focuses on the supersonic flow over the plate at Re less-than-or-equal-to 10(5). Results on fine computational grids are presented for flow angles up to 20-degrees. The calculations reveal that the flow remain attached for angles of incidence less than a = 5-degrees. For a = 5-degrees and Re = 10(5), separation of the flow at the trailing edge appeared. Increasing the flow angle (a > 5-degrees) moves the separation point upstream while a reverse flow region forms for the entire range of the Reynolds numbers used in this study. The results reveal that for large angles of incidence, the variation of the Reynolds number has significant effects on the variation of the flow variables. The flow behind the trailing edge is also affected from the flow angle as well as from the Reynolds number. Comparisons are also presented between viscous and inviscid solutions. The comparisons show that the viscous effects are dominant on the upper surface of the plate as well as behind the trailing edge. These effects become stronger when the flow angle is a = 20-degrees.
引用
收藏
页码:1553 / 1573
页数:21
相关论文
共 52 条
[1]  
Anderson J. D., 1982, MODERN COMPRESSIBLE
[2]  
[Anonymous], 1968, BOUNDARY LAYER THEOR
[3]  
[Anonymous], 1982, LECT NOTES PHYS, DOI DOI 10.1007/3-540-11948-5_66
[4]  
[Anonymous], 1957, ELEMENTS GASDYNAMICS
[5]   TRAILING-EDGE STALL [J].
BROWN, SN ;
STEWARTS.K .
JOURNAL OF FLUID MECHANICS, 1970, 42 :561-&
[6]  
CHAKRAVARTHY S, 1985, AIAA850165 PAP
[7]  
CHAKRAVARTHY SR, 1988, VONKARMAN I FLUIDS D, P1
[8]  
CHOW R, 1976, FLUID DYNAMICS LECTU, V59
[9]   EFFICIENT SOLUTION ALGORITHMS FOR THE RIEMANN PROBLEM FOR REAL GASES [J].
COLELLA, P ;
GLAZ, HM .
JOURNAL OF COMPUTATIONAL PHYSICS, 1985, 59 (02) :264-289
[10]  
CROCCO L, 1955, P C HIGH SPEED AERO, V1, P75