STABILITY OF KERRS SPACE-TIME

被引:28
作者
STEWART, JM [1 ]
机构
[1] MAX PLANCK INST PHYS & ASTROPHYS, MUNICH, FED REP GER
关键词
D O I
10.1098/rspa.1975.0089
中图分类号
O [数理科学和化学]; P [天文学、地球科学]; Q [生物科学]; N [自然科学总论];
学科分类号
07 ; 0710 ; 09 ;
摘要
引用
收藏
页码:65 / 79
页数:15
相关论文
共 30 条
[1]   MAXIMAL ANALYTIC EXTENSION OF KERR METRIC [J].
BOYER, RH ;
LINDQUIST, RW .
JOURNAL OF MATHEMATICAL PHYSICS, 1967, 8 (02) :265-+
[2]   GLOBAL STRUCTURE OF KERR FAMILY OF GRAVITATIONAL FIELDS [J].
CARTER, B .
PHYSICAL REVIEW, 1968, 174 (05) :1559-+
[3]  
Carter B., 1968, Communications in Mathematical Physics, V10, P280
[4]   AXISYMMETRIC BLACK HOLE HAS ONLY 2 DEGREES OF FREEDOM [J].
CARTER, B .
PHYSICAL REVIEW LETTERS, 1971, 26 (06) :331-+
[6]   STABILITY OF SCALAR PERTURBATIONS OF A KERR-METRIC BLACK HOLE [J].
DETWEILER, SL ;
IPSER, JR .
ASTROPHYSICAL JOURNAL, 1973, 185 (02) :675-683
[7]   AXISYMMETRIC STABILITY OF KERR BLACK-HOLES [J].
FRIEDMAN, JL ;
SCHUTZ, BF .
PHYSICAL REVIEW LETTERS, 1974, 32 (05) :243-245
[8]   ANALYTIC PROPERTIES OF TEUKOLSKY EQUATION [J].
HARTLE, JB ;
WILKINS, DC .
COMMUNICATIONS IN MATHEMATICAL PHYSICS, 1974, 38 (01) :47-63
[9]   BLACK HOLES IN GENERAL RELATIVITY [J].
HAWKING, SW .
COMMUNICATIONS IN MATHEMATICAL PHYSICS, 1972, 25 (02) :152-&
[10]   VARIATIONAL PRINCIPLE FOR BLACK HOLES [J].
HAWKING, SW .
COMMUNICATIONS IN MATHEMATICAL PHYSICS, 1973, 33 (04) :323-334