RNA PSEUDOKNOTS - STABILITY AND LOOP SIZE REQUIREMENTS

被引:129
作者
WYATT, JR
PUGLISI, JD
TINOCO, I
机构
[1] UNIV CALIF BERKELEY, DEPT CHEM, BERKELEY, CA 94720 USA
[2] UNIV CALIF BERKELEY, CHEM BIODYNAM LAB, BERKELEY, CA 94720 USA
关键词
D O I
10.1016/0022-2836(90)90193-P
中图分类号
Q5 [生物化学]; Q7 [分子生物学];
学科分类号
071010 ; 081704 ;
摘要
The effects of ionic conditions, loop size and loop sequence on the formation of pseudoknots by RNA oligonucleotides have been investigated using biochemical and biophysical methods. An oligonucleotide with the sequence 5′ GCGAUUUCUGACCGCUUUUUUGUCAG 3′ and oligonucleotides with variations in the sequences of the two loop regions, denoted by bold face type, were studied. Each sequence with the potential to form a pseudoknot can also form two stable hairpins. The pseudoknot structure is stabilized relative to the hairpins by addition of Mg2+. Even in the presence of Mg2+, the pseudoknots formed by the sequences investigated are only marginally more stable (1.5 to 2 kcal mol-1 in free energy at 37 °C) than either of the constituent hairpins. The pseudoknot structure is the stable conformation in the presence of Mg2+ when the first loop region is at least three nucleotides and the second is at least four nucleotides. Further deletion of nucleotides from the loop regions stabilizes possible hairpin structures relative to the pseudoknot and equilibria among secondary and tertiary structures result. © 1990 Academic Press Limited.
引用
收藏
页码:455 / 470
页数:16
相关论文
共 42 条
[1]   ALTERNATIVE MESSENGER-RNA STRUCTURES OF THE CIII-GENE OF BACTERIOPHAGE-LAMBDA DETERMINE THE RATE OF ITS TRANSLATION INITIATION [J].
ALTUVIA, S ;
KORNITZER, D ;
TEFF, D ;
OPPENHEIM, AB .
JOURNAL OF MOLECULAR BIOLOGY, 1989, 210 (02) :265-280
[2]   OPTIMIZED PARAMETERS FOR RNA DOUBLE-HELICES [J].
ARNOTT, S ;
HUKINS, DWL ;
DOVER, SD .
BIOCHEMICAL AND BIOPHYSICAL RESEARCH COMMUNICATIONS, 1972, 48 (06) :1392-&
[3]   COMPARISON OF TRANSFER RIBONUCLEIC-ACID STRUCTURES USING COBRA VENOM AND S1 ENDONUCLEASES [J].
AURON, PE ;
WEBER, LD ;
RICH, A .
BIOCHEMISTRY, 1982, 21 (19) :4700-4706
[4]   FOURIER-TRANSFORM NMR PULSE METHODS FOR MEASUREMENT OF SLOW-EXCHANGE RATES [J].
CAMPBELL, ID ;
DOBSON, CM ;
RATCLIFFE, RG ;
WILLIAMS, RJP .
JOURNAL OF MAGNETIC RESONANCE, 1978, 29 (03) :397-417
[5]   CONFORMATIONAL-CHANGES OF TRANSFER RIBONUCLEIC-ACID - EQUILIBRIUM PHASE-DIAGRAMS [J].
COLE, PE ;
CROTHERS, DM ;
YANG, SK .
BIOCHEMISTRY, 1972, 11 (23) :4358-&
[7]   A MODEL FOR THE TERTIARY STRUCTURE OF MAMMALIAN MITOCHONDRIAL TRANSFER-RNAS LACKING THE ENTIRE DIHYDROURIDINE LOOP AND STEM [J].
DEBRUIJN, MHL ;
KLUG, A .
EMBO JOURNAL, 1983, 2 (08) :1309-1321
[8]   3-D GRAPHICS MODELING OF THE TRANSFER RNA-LIKE 3'-END OF TURNIP YELLOW MOSAIC-VIRUS RNA - STRUCTURAL AND FUNCTIONAL IMPLICATIONS [J].
DUMAS, P ;
MORAS, D ;
FLORENTZ, C ;
GIEGE, R ;
VERLAAN, P ;
VANBELKUM, A ;
PLEIJ, CWA .
JOURNAL OF BIOMOLECULAR STRUCTURE & DYNAMICS, 1987, 4 (05) :707-728
[9]   PROBING THE STRUCTURE OF RNAS IN SOLUTION [J].
EHRESMANN, C ;
BAUDIN, F ;
MOUGEL, M ;
ROMBY, P ;
EBEL, JP ;
EHRESMANN, B .
NUCLEIC ACIDS RESEARCH, 1987, 15 (22) :9109-9128
[10]   MAPPING OF THE SITES OF PROTECTION ON A 5S-RNA GENE BY THE XENOPUS TRANSCRIPTION FACTOR-IIIA - A MODEL FOR THE INTERACTION [J].
FAIRALL, L ;
RHODES, D ;
KLUG, A .
JOURNAL OF MOLECULAR BIOLOGY, 1986, 192 (03) :577-591