USE OF REPETITIVE SEQUENCES AND THE POLYMERASE CHAIN-REACTION TECHNIQUE TO CLASSIFY GENETICALLY RELATED BRADYRHIZOBIUM-JAPONICUM SEROCLUSTER 123 STRAINS

被引:115
作者
JUDD, AK
SCHNEIDER, M
SADOWSKY, MJ
DEBRUIJN, FJ
机构
[1] UNIV MINNESOTA,DEPT SOIL SCI,ST PAUL,MN 55108
[2] UNIV MINNESOTA,DEPT MICROBIOL,ST PAUL,MN 55108
[3] MICHIGAN STATE UNIV,DEPT MICROBIOL,DOE,PLANT RES LAB,E LANSING,MI 48824
[4] MICHIGAN STATE UNIV,NSF CTR MICROBIAL ECOL,E LANSING,MI 48824
关键词
D O I
10.1128/AEM.59.6.1702-1708.1993
中图分类号
Q81 [生物工程学(生物技术)]; Q93 [微生物学];
学科分类号
071005 ; 0836 ; 090102 ; 100705 ;
摘要
We have determined that repetitive (repetitive extragenic palindromic [REP] and enterobacterial repetitive intergenic consensus [ERIC]) sequences used in conjunction with the polymerase chain reaction technique (REP and ERIC PCR) provide an effective means of differentiating between and classifying genetically related Bradyrhizobium japonicum serocluster 123 strains. Analysis of REP and ERIC PCR-generated dendrograms indicated that this technique can effectively differentiate between closely related strains which were indistinguishable by using other classification methods. To maximize the genomic differences detected by REP and ERIC PCR fingerprint patterns, the REP and the ERIC data sets were combined for statistical analyses. REP-plus-ERIC PCR fingerprints were also found to provide a method to differentiate between highly diverse strains of Bradyrhizobium spp., but they did not provide an effective means for classifying these strains because of the relatively low number of REP and ERIC consensus sequences found in some of the bradyrhizobia. Our results also suggest that there is a relationship between nodulation phenotypes and the distribution of REP and ERIC consensus sequences within the genomes of B. japonicum serogroup 123 and 127 strains. Results obtained by restriction fragment length polymorphism hybridization analyses were correlated with the phylogenetic classification of B. japonicum serocluster 123 strains obtained by using REP and ERIC PCR.
引用
收藏
页码:1702 / 1708
页数:7
相关论文
共 25 条
[1]  
[Anonymous], 1963, PRINCIPLES NUMERICAL
[2]   MINIMAL ANTIGENIC CONSTITUTION OF 28 STRAINS OF RHIZOBIUM JAPONICUM [J].
DATE, RA ;
DECKER, AM .
CANADIAN JOURNAL OF MICROBIOLOGY, 1965, 11 (01) :1-&
[3]  
DEBRUIJN FJ, 1992, UNPUB, V58, P2180
[4]  
GRAHAM PH, 1969, ANALYTICAL SEROLOGY, V2, P353
[5]  
HOLLIS AB, 1981, J GEN MICROBIOL, V123, P215
[6]   EXTRACELLULAR POLYSACCHARIDE COMPOSITION, EX PLANTA NITROGENASE ACTIVITY, AND DNA HOMOLOGY IN RHIZOBIUM-JAPONICUM [J].
HUBER, TA ;
AGARWAL, AK ;
KEISTER, DL .
JOURNAL OF BACTERIOLOGY, 1984, 158 (03) :1168-1171
[7]   ERIC SEQUENCES - A NOVEL FAMILY OF REPETITIVE ELEMENTS IN THE GENOMES OF ESCHERICHIA-COLI, SALMONELLA-TYPHIMURIUM AND OTHER ENTEROBACTERIA [J].
HULTON, CSJ ;
HIGGINS, CF ;
SHARP, PM .
MOLECULAR MICROBIOLOGY, 1991, 5 (04) :825-834
[8]   REPEATED SEQUENCES SIMILAR TO INSERTION ELEMENTS CLUSTERED AROUND THE NIF REGION OF THE RHIZOBIUM-JAPONICUM GENOME [J].
KALUZA, K ;
HAHN, M ;
HENNECKE, H .
JOURNAL OF BACTERIOLOGY, 1985, 162 (02) :535-542
[9]   NODULATION AND COMPETITION FOR NODULATION OF SELECTED SOYBEAN GENOTYPES AMONG BRADYRHIZOBIUM-JAPONICUM SEROGROUP-123 ISOLATES [J].
KEYSER, HH ;
CREGAN, PB .
APPLIED AND ENVIRONMENTAL MICROBIOLOGY, 1987, 53 (11) :2631-2635
[10]   FATTY-ACIDS, ANTIBIOTIC-RESISTANCE, AND DEOXYRIBONUCLEIC-ACID HOMOLOGY GROUPS OF BRADYRHIZOBIUM-JAPONICUM [J].
KUYKENDALL, LD ;
ROY, MA ;
ONEILL, JJ ;
DEVINE, TE .
INTERNATIONAL JOURNAL OF SYSTEMATIC BACTERIOLOGY, 1988, 38 (04) :358-361