STABILITY AND HOPF-BIFURCATION IN A PREDATOR PREY SYSTEM WITH SEVERAL PARAMETERS

被引:66
作者
HAINZL, J
机构
关键词
D O I
10.1137/0148008
中图分类号
O29 [应用数学];
学科分类号
070104 ;
摘要
引用
收藏
页码:170 / 190
页数:21
相关论文
共 13 条
[1]  
Bazykin A. D., 1976, STRUCTURAL DYNAMIC S
[2]   THE INFLUENCE OF PREDATOR SATURATION EFFECT AND COMPETITION AMONG PREDATORS ON PREDATOR-PREY SYSTEM DYNAMICS [J].
BAZYKIN, AD ;
BEREZOVSKAYA, FS ;
DENISOV, GA ;
KUZNETZOV, YA .
ECOLOGICAL MODELLING, 1981, 14 (1-2) :39-57
[3]  
Carr J, 2012, APPL CTR MANIFOLD TH
[4]  
Guckenheimer J., 1984, APPL MATH SCI, V51, P947, DOI 10.1115/1.3167759
[5]  
HAINZL J, 1985, RAUBER BEUTE MODELL, P154
[6]  
Hirsch M., 1974, DIFF EQUAT+
[7]  
Knobloch H. W., 1974, GEWOHNLICHE DIFFEREN
[8]   BIFURCATIONS AND TRAJECTORIES JOINING CRITICAL-POINTS [J].
KOPELL, N ;
HOWARD, LN .
ADVANCES IN MATHEMATICS, 1975, 18 (03) :306-358
[9]   INFLUENCE OF NONLINEAR INCIDENCE RATES UPON THE BEHAVIOR OF SIRS EPIDEMIOLOGIC MODELS [J].
LIU, WM ;
LEVIN, SA ;
IWASA, Y .
JOURNAL OF MATHEMATICAL BIOLOGY, 1986, 23 (02) :187-204
[10]  
Marsden J. E., 1976, APPL MATH SCI, V19