ON HARMONIC WAVE-PROPAGATION IN MULTILAYERED VISCOELASTIC MEDIA

被引:6
作者
NACIRI, T
NAVI, P
GRANACHER, O
机构
[1] Ecole Nationale des Ponts et Chaussées, Centre d'Enseignement et de Recherche en Analyse des Matériaux, Central IV, 1 Avenue Montaigne
关键词
D O I
10.1016/0020-7403(90)90018-E
中图分类号
TH [机械、仪表工业];
学科分类号
0802 ;
摘要
An analytical method is presented to study the propagation of plane harmonic waves in an infinite periodically laminated viscoelastic medium. The dispersion and the damping relations for a periodic layered medium, when the wave propagates in the direction perpendicular to the layers, are illustrated. From these curves, one can establish the static and dynamic characteristics of the homogenized medium. It is shown that when the half of the wave length approaches the periodic length of the medium, the medium becomes extremely dissipative. A comparison between an elastic and a viscoelastic multilayered medium is made. It is illustrated that, in the elastic medium at the zone of forbidden frequencies no waves penetrate into the medium, whereas for the multilayered viscoelastic medium the waves can penetrate but dissipate very fast. © 1990.
引用
收藏
页码:225 / 231
页数:7
相关论文
共 13 条
[1]  
Brillouin L., 1953, WAVE PROPAGATION PER
[2]   HARMONIC WAVE-PROPAGATION IN AN INFINITE VISCOELASTIC MEDIUM WITH A PERIODIC ARRAY OF CYLINDRICAL ELASTIC FIBERS [J].
MA, TC ;
SCOTT, RA ;
YANG, WH .
JOURNAL OF SOUND AND VIBRATION, 1980, 69 (02) :257-264
[3]  
MANDEL J, 1966, MECHANIQUE MILIEUX C
[4]  
MINGAWA S, 1981, INT J NUMER METH ENG, V17, P1335
[5]   DISPERSION-RELATIONS AND MODE SHAPES FOR WAVES IN LAMINATED VISCOELASTIC COMPOSITES BY VARIATIONAL METHODS [J].
MUKHERJEE, S ;
LEE, EH .
INTERNATIONAL JOURNAL OF SOLIDS AND STRUCTURES, 1978, 14 (01) :1-13
[6]  
NAVI P, 1973, THESIS UCLA LOS ANGE
[7]  
NAVI P, 1987, P INT C IMPACT LOADI, V2, P985
[8]  
ROBINSON CW, 1974, J APPL MECHA, P89
[9]  
STERN M, 1971, J APPL MECH, P448
[10]  
Stoker J.J., 1950, NONLINEAR VIBRATIONS, V2