HIGHLY SYMMETRICAL SUBGRAPHS OF HYPERCUBES

被引:19
作者
BROUWER, AE
DEJTER, IJ
THOMASSEN, C
机构
[1] EINDHOVEN UNIV TECHNOL,5600 MB EINDHOVEN,NETHERLANDS
[2] UNIV PUERTO RICO,RIO PIEDRAS,PR 00931
[3] TECH UNIV DENMARK,DK-2800 LYNGBY,DENMARK
关键词
EDGE-COLORING; HYPERCUBE; VERTEX-TRANSITIVE SUBGRAPH;
D O I
10.1023/A:1022472513494
中图分类号
O1 [数学];
学科分类号
0701 ; 070101 ;
摘要
Two questions are considered, namely (i) How many colors are needed for a coloring of the n-cube without monochromatic quadrangles or hexagons? We show that four colors suffice and thereby settle a problem of Erdos. (ii) Which vertex-transitive induced subgraphs does a hypercube have? An interesting graph has come up in this context: If we delete a Hamming code from the 7-cube, the resulting graph is 6-regular, vertex-transitive and its edges can be two-colored such that the two monochromatic subgraphs are isomorphic, cubic, edge-transitive, nonvertex-transitive graphs of girth 10.
引用
收藏
页码:25 / 29
页数:5
相关论文
共 10 条
[1]  
Bouwer I., 1972, J COMB THEORY B, V12, P32, DOI [10.1016/0095-8956(72)90030-5, DOI 10.1016/0095-8956(72)90030-5]
[2]  
BOUWER IZ, 1988, FOSTER CENSUS
[3]   SUBGRAPHS OF A HYPERCUBE CONTAINING NO SMALL EVEN CYCLES [J].
CHUNG, FRK .
JOURNAL OF GRAPH THEORY, 1992, 16 (03) :273-286
[4]  
COHEN AM, 1985, EUROP J COMB, V6, P13, DOI DOI 10.1016/S0195-6698(85)80017-2
[5]  
CONDER M, 1992, HEXAGON FREE SUBGRAP
[6]  
COXETER HSM, 1981, ZERO SYMMETRIC GRAPH
[7]  
DEJTER IJ, 1991, GRAPH THEORY COMBINA, P162
[8]  
FOSTER RM, 1966, UNPUB CENSUS TRIVALE
[9]  
Macwilliams F. J., 1977, THEORY ERROR CORRECT
[10]  
[No title captured]