CRYSTAL-STRUCTURE OF RECOMBINANT CHICKEN TRIOSEPHOSPHATE ISOMERASE PHOSPHOGLYCOLOHYDROXAMATE COMPLEX AT 1.8-ANGSTROM RESOLUTION

被引:86
作者
ZHANG, ZD
SUGIO, S
KOMIVES, EA
LIU, KD
KNOWLES, JR
PETSKO, GA
RINGE, D
机构
[1] BRANDEIS UNIV,ROSENSTIEL BASIC MED SCI RES CTR,DEPT BIOCHEM,WALTHAM,MA 02254
[2] BRANDEIS UNIV,ROSENSTIEL BASIC MED SCI RES CTR,DEPT CHEM,WALTHAM,MA 02254
[3] UNIV CALIF SAN DIEGO,DEPT CHEM,LA JOLLA,CA 92092
[4] HARVARD UNIV,DEPT CHEM,CAMBRIDGE,MA 02138
关键词
D O I
10.1021/bi00176a012
中图分类号
Q5 [生物化学]; Q7 [分子生物学];
学科分类号
071010 ; 081704 ;
摘要
The crystal structure of recombinant chicken triosephosphate isomerase (TIM, E.C. 5.3.1.1) complexed with the intermediate analogue phosphoglycolohydroxamate (PGH) has been solved by the method of molecular replacement and refined to an R-factor of 18.5% at 1.8-Angstrom resolution. The structure is essentially identical to that of the yeast TIM-PGH complex [Davenport, R. C., et al. (1991) Biochemistry 30, 5821-5826] determined earlier and refined at comparable resolution. This identity extends to the high-energy conformations of the active-site residues Lys 13 and Ser211, as well as the positions of several bound water molecules that are retained in the active site when PGH is bound. Comparison with the structure of uncomplexed chicken TIM shows that the catalytic base, Glu165, moves several angstroms when PGH binds. This movement may provide a trigger for a larger conformational change, one of 7 Angstrom, in a loop near the active site, which folds down like a lid to shield the bound inhibitor and catalytic residues from contact with bulk solvent. These same conformational changes were seen in crystalline yeast TIM upon binding of PGH; their occurrence here in a different crystal form of TIM eliminates the possibility that they are an artifact of crystal packing.
引用
收藏
页码:2830 / 2837
页数:8
相关论文
共 53 条
[1]   ON THE 3-DIMENSIONAL STRUCTURE AND CATALYTIC MECHANISM OF TRIOSE PHOSPHATE ISOMERASE [J].
ALBER, T ;
BANNER, DW ;
BLOOMER, AC ;
PETSKO, GA ;
PHILLIPS, D ;
RIVERS, PS ;
WILSON, IA .
PHILOSOPHICAL TRANSACTIONS OF THE ROYAL SOCIETY OF LONDON SERIES B-BIOLOGICAL SCIENCES, 1981, 293 (1063) :159-171
[2]   CRYSTALLOGRAPHY AND SITE-DIRECTED MUTAGENESIS OF YEAST TRIOSEPHOSPHATE ISOMERASE - WHAT CAN WE LEARN ABOUT CATALYSIS FROM A SIMPLE ENZYME [J].
ALBER, TC ;
DAVENPORT, RC ;
GIAMMONA, DA ;
LOLIS, E ;
PETSKO, GA ;
RINGE, D .
COLD SPRING HARBOR SYMPOSIA ON QUANTITATIVE BIOLOGY, 1987, 52 :603-613
[3]   FREE-ENERGY PROFILE FOR REACTION CATALYZED BY TRIOSEPHOSPHATE ISOMERASE [J].
ALBERY, WJ ;
KNOWLES, JR .
BIOCHEMISTRY, 1976, 15 (25) :5627-5631
[4]   STRUCTURE OF CHICKEN MUSCLE TRIOSE PHOSPHATE ISOMERASE DETERMINED CRYSTALLOGRAPHICALLY AT 2.5A RESOLUTION USING AMINO-ACID SEQUENCE DATA [J].
BANNER, DW ;
BLOOMER, AC ;
PETSKO, GA ;
PHILLIPS, DC ;
POGSON, CI ;
WILSON, IA ;
CORRAN, PH ;
FURTH, AJ ;
MILMAN, JD ;
OFFORD, RE ;
PRIDDLE, JD ;
WALEY, SG .
NATURE, 1975, 255 (5510) :609-614
[5]   COMPUTER-SIMULATION AND ANALYSIS OF THE REACTION PATHWAY OF TRIOSEPHOSPHATE ISOMERASE [J].
BASH, PA ;
FIELD, MJ ;
DAVENPORT, RC ;
PETSKO, GA ;
RINGE, D ;
KARPLUS, M .
BIOCHEMISTRY, 1991, 30 (24) :5826-5832
[6]   DIRECT OBSERVATION OF SUBSTRATE DISTORTION BY TRIOSEPHOSPHATE ISOMERASE USING FOURIER-TRANSFORM INFRARED-SPECTROSCOPY [J].
BELASCO, JG ;
KNOWLES, JR .
BIOCHEMISTRY, 1980, 19 (03) :472-477
[7]   TRIOSEPHOSPHATE ISOMERASE CATALYSIS IS DIFFUSION CONTROLLED - APPENDIX - ANALYSIS OF TRIOSE PHOSPHATE EQUILIBRIA IN AQUEOUS-SOLUTION BY P-31 NMR [J].
BLACKLOW, SC ;
RAINES, RT ;
LIM, WA ;
ZAMORE, PD ;
KNOWLES, JR .
BIOCHEMISTRY, 1988, 27 (04) :1158-1167
[8]   STEPWISE IMPROVEMENTS IN CATALYTIC EFFECTIVENESS - INDEPENDENCE AND INTERDEPENDENCE IN COMBINATIONS OF POINT MUTATIONS OF A SLUGGISH TRIOSEPHOSPHATE ISOMERASE [J].
BLACKLOW, SC ;
LIU, KD ;
KNOWLES, JR .
BIOCHEMISTRY, 1991, 30 (34) :8470-8476
[9]   HOW CAN A CATALYTIC LESION BE OFFSET - THE ENERGETICS OF 2 PSEUDOREVERTANT TRIOSEPHOSPHATE ISOMERASES [J].
BLACKLOW, SC ;
KNOWLES, JR .
BIOCHEMISTRY, 1990, 29 (17) :4099-4108
[10]   SUBUNIT INTERFACE OF TRIOSEPHOSPHATE ISOMERASE - SITE-DIRECTED MUTAGENESIS AND CHARACTERIZATION OF THE ALTERED ENZYME [J].
CASAL, JI ;
AHERN, TJ ;
DAVENPORT, RC ;
PETSKO, GA ;
KLIBANOV, AM .
BIOCHEMISTRY, 1987, 26 (05) :1258-1264