CLASSIFICATION OF ALL SIMPLE GRADED LIE-ALGEBRAS WHOSE LIE-ALGEBRA IS REDUCTIVE .1.

被引:93
作者
SCHEUNERT, M [1 ]
NAHM, W [1 ]
RITTENBERG, V [1 ]
机构
[1] UNIV BONN,INST PHYS,D-5300 BONN 1,FED REP GER
关键词
D O I
10.1063/1.523108
中图分类号
O4 [物理学];
学科分类号
0702 ;
摘要
引用
收藏
页码:1626 / 1639
页数:14
相关论文
共 21 条
[1]  
Andreev E. M., 1967, FUNCT ANAL APPL+, V1, P3
[2]  
Bourbaki, 1968, ACTUALITES SCI IND, V1337
[3]   GRADED LIE-ALGEBRAS IN MATHEMATICS AND PHYSICS (BOSE-FERMI SYMMETRY) [J].
CORWIN, L ;
NEEMAN, Y ;
STERNBERG, S .
REVIEWS OF MODERN PHYSICS, 1975, 47 (03) :573-603
[4]  
Freudenthal Hans, 1969, LINEAR LIE GROUPS
[5]   SIMPLE SUPERSYMMETRIES [J].
FREUND, PGO ;
KAPLANSKY, I .
JOURNAL OF MATHEMATICAL PHYSICS, 1976, 17 (02) :228-231
[6]   ON DEFORMATION OF RINGS + ALGEBRAS [J].
GERSTENHABER, M .
ANNALS OF MATHEMATICS, 1964, 79 (01) :59-&
[7]   COHOMOLOGY STRUCTURE OF AN ASSOCIATIVE RING [J].
GERSTENHABER, M .
ANNALS OF MATHEMATICS, 1963, 78 (02) :267-&
[8]  
KAC VG, 1975, FUNKTSIONAL ANAL PRI, V9, P91
[9]   CLASSIFICATION OF DETERMINED SUBGROUPS OF COMPACT COHESIVE LIE GROUPS [J].
KRAMER, M .
COMMUNICATIONS IN ALGEBRA, 1975, 3 (08) :691-737
[10]  
MICHEL L, 1970, GROUP REPRESENTATION, P136