TUNNELING VERSUS CHAOS IN THE KICKED HARPER MODEL

被引:43
作者
RONCAGLIA, R
BONCI, L
IZRAILEV, FM
WEST, BJ
GRIGOLINI, P
机构
[1] BUDKER INST NUCL PHYS, NOVOSIBIRSK 630090, RUSSIA
[2] UNIV N TEXAS, DEPT PHYS, DENTON, TX 76203 USA
[3] CNR, IST BIOFIS, I-56127 PISA, ITALY
关键词
D O I
10.1103/PhysRevLett.73.802
中图分类号
O4 [物理学];
学科分类号
0702 ;
摘要
We study the interplay between tunneling and chaos in a quantum system which classically would be weakly chaotic. We show that the tunneling rate between two stable islands is exponential and regular when the characteristic size of the chaotic region separating the islands is much larger or much smaller than Planck's constant. When the chaotic region and Planck's constant are of the same size the tunneling rate is shown to be irregular. This result is obtained by means of a numerical analysis of the quantum kicked Harper model, but we argue this to be a generic effect of classical chaos on tunneling.
引用
收藏
页码:802 / 805
页数:4
相关论文
共 20 条
[1]  
[Anonymous], 1992, TRANSITION CHAOS CON
[2]   PHASE-DIAGRAM IN THE KICKED HARPER MODEL [J].
ARTUSO, R ;
BORGONOVI, F ;
GUARNERI, I ;
REBUZZINI, L ;
CASATI, G .
PHYSICAL REVIEW LETTERS, 1992, 69 (23) :3302-3305
[3]   FRACTAL SPECTRUM AND ANOMALOUS DIFFUSION IN THE KICKED HARPER MODEL [J].
ARTUSO, R ;
CASATI, G ;
SHEPELYANSKY, D .
PHYSICAL REVIEW LETTERS, 1992, 68 (26) :3826-3829
[4]   QUANTUM MAPS [J].
BERRY, MV ;
BALAZS, NL ;
TABOR, M ;
VOROS, A .
ANNALS OF PHYSICS, 1979, 122 (01) :26-63
[5]   MANIFESTATIONS OF CLASSICAL PHASE-SPACE STRUCTURES IN QUANTUM-MECHANICS [J].
BOHIGAS, O ;
TOMSOVIC, S ;
ULLMO, D .
PHYSICS REPORTS-REVIEW SECTION OF PHYSICS LETTERS, 1993, 223 (02) :43-133
[6]   QUANTUM TUNNELING AND CHAOTIC DYNAMICS [J].
BOHIGAS, O ;
BOOSE, D ;
DECARVALHO, RE ;
MARVULLE, V .
NUCLEAR PHYSICS A, 1993, 560 (01) :197-210
[8]   METAMORPHOSIS OF A CANTOR SPECTRUM DUE TO CLASSICAL CHAOS [J].
GEISEL, T ;
KETZMERICK, R ;
PETSCHEL, G .
PHYSICAL REVIEW LETTERS, 1991, 67 (26) :3635-3638
[9]  
GOETSCH P, 1992, ANN PHYS-BERLIN, V1, P662, DOI 10.1002/andp.19925040806
[10]  
HASEGAWA H, 1989, PROG THEOR PHYS SUPP, P198, DOI 10.1143/PTPS.98.198