PREDICTING SLOW STRUCTURAL TRANSITIONS IN MACROMOLECULAR SYSTEMS - CONFORMATIONAL FLOODING

被引:518
作者
GRUBMULLER, H
机构
[1] Institut für Medizinische Optik, Theoretische Biophysik, Ludwig-Maximilians-Universität Manchen, D-80333 Manchen
来源
PHYSICAL REVIEW E | 1995年 / 52卷 / 03期
关键词
D O I
10.1103/PhysRevE.52.2893
中图分类号
O35 [流体力学]; O53 [等离子体物理学];
学科分类号
070204 ; 080103 ; 080704 ;
摘要
We present a method to predict complex structural (conformational) transitions in irregular or disordered macromolecular systems, such as proteins or glasses, at the atomic level. Our method aims at rare events, which currently cannot be predicted with traditional molecular dynamics (MD) simulations, since these currently are limited to time scales shorter than a few nanoseconds. Given an initial conformation of the system, our method identifies one or more product states, which may be separated from the initial state by free energy barriers that are large on the scale of thermal energy. It also provides an approximate reaction path, which can be used to determine barrier heights or reaction rates with the usual techniques. The method employs an artificial potential that destabilizes the initial conformation and, thereby, lowers free energy barriers of structural transitions. As a result, transitions are accelerated and may be observed in MD simulations. An analytical estimate for the acceleration factor is given. The method is applied to two test systems, an argon microcluster and a simplified protein model. By these studies we demonstrated that our method is capable of shortening mean transition times from 0.5 mu s (argon cluster) and 1.4 ns (protein model) to a few picoseconds. These results suggest that our method is particularly well suited to study biochemically relevant conformational motions in proteins at a microsecond time scale.
引用
收藏
页码:2893 / 2906
页数:14
相关论文
共 71 条
[1]   ESSENTIAL DYNAMICS OF PROTEINS [J].
AMADEI, A ;
LINSSEN, ABM ;
BERENDSEN, HJC .
PROTEINS-STRUCTURE FUNCTION AND GENETICS, 1993, 17 (04) :412-425
[2]   MOLECULAR-DYNAMICS SIMULATIONS AT CONSTANT PRESSURE AND-OR TEMPERATURE [J].
ANDERSEN, HC .
JOURNAL OF CHEMICAL PHYSICS, 1980, 72 (04) :2384-2393
[3]   REBINDING AND RELAXATION IN THE MYOGLOBIN POCKET [J].
ANSARI, A ;
BERENDZEN, J ;
BRAUNSTEIN, D ;
COWEN, BR ;
FRAUENFELDER, H ;
HONG, MK ;
IBEN, IET ;
JOHNSON, JB ;
ORMOS, P ;
SAUKE, TB ;
SCHOLL, R ;
SCHULTE, A ;
STEINBACH, PJ ;
VITTITOW, J ;
YOUNG, RD .
BIOPHYSICAL CHEMISTRY, 1987, 26 (2-3) :337-355
[4]  
ATKINS PW, 1990, PHYSICAL CHEM
[5]   DYNAMICS OF LIGAND-BINDING TO MYOGLOBIN [J].
AUSTIN, RH ;
BEESON, KW ;
EISENSTEIN, L ;
FRAUENFELDER, H ;
GUNSALUS, IC .
BIOCHEMISTRY, 1975, 14 (24) :5355-5373
[6]  
BERNE BJ, 1985, MULTIPLE TIME SCALES, P419
[7]   CHARMM - A PROGRAM FOR MACROMOLECULAR ENERGY, MINIMIZATION, AND DYNAMICS CALCULATIONS [J].
BROOKS, BR ;
BRUCCOLERI, RE ;
OLAFSON, BD ;
STATES, DJ ;
SWAMINATHAN, S ;
KARPLUS, M .
JOURNAL OF COMPUTATIONAL CHEMISTRY, 1983, 4 (02) :187-217
[8]   CONFORMATIONAL SAMPLING USING HIGH-TEMPERATURE MOLECULAR-DYNAMICS [J].
BRUCCOLERI, RE ;
KARPLUS, M .
BIOPOLYMERS, 1990, 29 (14) :1847-1862
[9]   CRYSTALLOGRAPHIC R-FACTOR REFINEMENT BY MOLECULAR-DYNAMICS [J].
BRUNGER, AT ;
KURIYAN, J ;
KARPLUS, M .
SCIENCE, 1987, 235 (4787) :458-460
[10]   MONTE-CARLO METHODS FOR ACCELERATING BARRIER CROSSING - ANTI-FORCE-BIAS AND VARIABLE STEP ALGORITHMS [J].
CAO, JS ;
BERNE, BJ .
JOURNAL OF CHEMICAL PHYSICS, 1990, 92 (03) :1980-1985