BOUNDING THE NUMBER OF K-FACES IN ARRANGEMENTS OF HYPERPLANES

被引:11
作者
FUKUDA, K
SAITO, S
TAMURA, A
TOKUYAMA, T
机构
[1] TOKYO INST TECHNOL, DEPT INFORMAT SCI, MEGURO KU, TOKYO 152, JAPAN
[2] IBM CORP, RES, TOKYO RES LAB, CHIYODA KU, TOKYO 102, JAPAN
关键词
D O I
10.1016/0166-218X(91)90067-7
中图分类号
O29 [应用数学];
学科分类号
070104 ;
摘要
We study certain structural problems of arrangements of hyperplanes in d-dimensional Euclidean space. Of special interest are nontrivial relations satisfied by the f-vector f = (f0, f1, ..., f(d)) of an arrangement, where f(k) denotes the number of k-faces. The first result is that the mean number of (k - 1)-faces lying on the boundary of a fixed k-face is less than 2k in any arrangement, which implies the simple linear inequality f(k) > (d - k + 1)/kf(k - 1) if f(k) not-equal 0. Similar results hold for spherical arrangements and oriented matroids. We also show that the f-vector and the h-vector of a simple arrangement is logarithmic concave, and hence unimodal.
引用
收藏
页码:151 / 165
页数:15
相关论文
共 25 条
[1]  
Bayer Margaret M., 1984, CONT MATH, V34, P207
[2]   ORIENTABILITY OF MATROIDS [J].
BLAND, RG ;
LASVERGNAS, M .
JOURNAL OF COMBINATORIAL THEORY SERIES B, 1978, 24 (01) :94-123
[3]  
Buck RC., 1943, AM MATH MONTHLY, V50, P541, DOI [DOI 10.2307/2303424, 10.2307/2303424]
[4]  
Chazelle B., 1988, 29th Annual Symposium on Foundations of Computer Science (IEEE Cat. No.88CH2652-6), P590, DOI 10.1109/SFCS.1988.21975
[5]   THE POWER OF GEOMETRIC DUALITY [J].
CHAZELLE, B ;
GUIBAS, LJ ;
LEE, DT .
BIT, 1985, 25 (01) :76-90
[6]   COMBINATORIAL COMPLEXITY-BOUNDS FOR ARRANGEMENTS OF CURVES AND SPHERES [J].
CLARKSON, KL ;
EDELSBRUNNER, H ;
GUIBAS, LJ ;
SHARIR, M ;
WELZL, E .
DISCRETE & COMPUTATIONAL GEOMETRY, 1990, 5 (02) :99-160
[7]  
Dharmadhikari Sudhakar, 1988, UNIMODALITY CONVEXIT
[8]   CONSTRUCTING ARRANGEMENTS OF LINES AND HYPERPLANES WITH APPLICATIONS [J].
EDELSBRUNNER, H ;
OROURKE, J ;
SEIDEL, R .
SIAM JOURNAL ON COMPUTING, 1986, 15 (02) :341-363
[9]  
Edelsbrunner H, 1987, ALGORITHMS COMBINATO
[10]   COMBINATORIAL FACE ENUMERATION IN ARRANGEMENTS AND ORIENTED MATROIDS [J].
FUKUDA, K ;
SAITO, S ;
TAMURA, A .
DISCRETE APPLIED MATHEMATICS, 1991, 31 (02) :141-149