The recent sequencing of two relatively long (approximately 100 kb) contigs of E.coli presents unique opportunities for investigating heterogeneity and genomic organization of the E.coli chromosome. We have evaluated a number of common and contrasting sequence features in the two new contigs with comparisons to all available E.coli sequences (> 1.6 Mb). Our analyses include assessments of: (i) counts and distributions of restriction sites, special oligonucleotides (e.g., Chi sites, Dam and Dcm methylase targets), and other marker arrays; (ii) significant distant and close direct and inverted repeat sequences; (iii) sequence similarities between the long contigs and other E.coli sequences; (iv) characterization and identification of rare and frequent oligonucleotides; (v) compositional biases in short oligonucleotides; and (vi) position-dependent fluctuations in sequence composition. The two contigs reveal a number of distinctive features, including: a cluster of five repeat/dyad elements with very regular spacings resembling a transcription attenuator in one of the contigs; REP elements, ERICs, and other long repeats; distinction of the Chi sequence as the most frequent oligonucleotide; regions of clustering, overdispersion, and regularity of certain restriction sites and short palindromes; and comparative domains of inhomogeneities in the two long contigs. These and other features are discussed in relation to the organization of the E.coli chromosome.