ON CONVERGENCE OF AN AUGMENTED LAGRANGIAN DECOMPOSITION METHOD FOR SPARSE CONVEX-OPTIMIZATION

被引:88
作者
RUSZCZYNSKI, A
机构
关键词
LARGE-SCALE OPTIMIZATION; DECOMPOSITION; AUGMENTED LAGRANGIANS;
D O I
10.1287/moor.20.3.634
中图分类号
C93 [管理学]; O22 [运筹学];
学科分类号
070105 ; 12 ; 1201 ; 1202 ; 120202 ;
摘要
A decomposition method for large-scale convex optimization problems with block-angular structure and many linking constraints is analysed. The method is based on a separable approximation of the augmented Lagrangian function. Weak global convergence of the method is proved and speed of convergence analysed. It is shown that convergence properties of the method are heavily dependent on sparsity of the linking constraints. Application to large-scale linear programming and stochastic programming is discussed.
引用
收藏
页码:634 / 656
页数:23
相关论文
共 23 条
  • [1] Bertsekas D. P, 1982, REINFORCEMENT LEARNI
  • [2] Bertsekas D.P., 1989, PARALLEL DISTRIBUTED
  • [3] Cohen G, 1984, ADV LARGE SCALE SYST, VI, P203
  • [4] DECOMPOSITION PRINCIPLE FOR LINEAR-PROGRAMS
    DANTZIG, GB
    WOLFE, P
    [J]. OPERATIONS RESEARCH, 1960, 8 (01) : 101 - 111
  • [5] Findeisen W., 1980, CONTROL COORDINATION
  • [6] Fortin M., 1983, AUGMENTED LAGRANGIAN, P97
  • [7] Gabay D., 1976, Computers & Mathematics with Applications, V2, P17, DOI 10.1016/0898-1221(76)90003-1
  • [8] Glowinski R, 1975, REV FRANCAISE AUTOMA, V2, P41
  • [9] HIRIARTURRUTY JB, 1982, RES NOTES MATH, V57, P1
  • [10] Kiwiel K.C., 1985, METHODS DESCENT NOND