BOSONIZATION AS DUALITY

被引:80
作者
BURGESS, CP [1 ]
QUEVEDO, F [1 ]
机构
[1] MCGILL UNIV,DEPT PHYS,MONTREAL H3A 2T8,QUEBEC,CANADA
基金
加拿大自然科学与工程研究理事会;
关键词
D O I
10.1016/0550-3213(94)90332-8
中图分类号
O412 [相对论、场论]; O572.2 [粒子物理学];
学科分类号
摘要
We show how to systematically derive the rules for bosonization in two dimensions as a particular case of a duality transformation. The duality process amounts to gauging the global symmetry of the original (fermionic) theory, and constraining the corresponding field strength F(munu) to vanish. Integration over the Lagrange multiplier, LAMBDA, for this constraint then reproduces the original theory, and integration over the gauge fields generates the dual theory with LAMBDA as the new (bosonized) variable. We work through the bosonization of the Dirac fermion, the massive and massless Thirring models, and a fermion on a cylindrical spacetime as illustrative examples.
引用
收藏
页码:373 / 387
页数:15
相关论文
共 19 条
[1]  
ALVAREZ E, CERNTH699193 PREPR
[2]   THETA-FUNCTIONS, MODULAR INVARIANCE, AND STRINGS [J].
ALVAREZGAUME, L ;
MOORE, G ;
VAFA, C .
COMMUNICATIONS IN MATHEMATICAL PHYSICS, 1986, 106 (01) :1-40
[3]   A SYMMETRY OF THE STRING BACKGROUND FIELD-EQUATIONS [J].
BUSCHER, TH .
PHYSICS LETTERS B, 1987, 194 (01) :59-62
[4]   SMOOTH BOSONIZATION - THE MASSIVE CASE [J].
DAMGAARD, PH ;
NIELSEN, HB ;
SOLLACHER, R .
PHYSICS LETTERS B, 1992, 296 (1-2) :132-138
[5]   DUALITY SYMMETRIES FROM NON-ABELIAN ISOMETRIES IN STRING THEORY [J].
DELAOSSA, XC ;
QUEVEDO, F .
NUCLEAR PHYSICS B, 1993, 403 (1-2) :377-394
[6]   BOSONIZATION AND QCD IN 2 DIMENSIONS [J].
FRISHMAN, Y ;
SONNENSCHEIN, J .
PHYSICS REPORTS-REVIEW SECTION OF PHYSICS LETTERS, 1993, 223 (06) :309-348
[7]   STRUCTURE OF IRREDUCIBLE SU(2) PARAFERMION MODULES DERIVED VIA THE FEIGIN-FUCHS CONSTRUCTION [J].
GRIFFIN, PA ;
HERNANDEZ, OF .
INTERNATIONAL JOURNAL OF MODERN PHYSICS A, 1992, 7 (06) :1233-1265
[8]   FEIGIN-FUCHS DERIVATION OF SU(1,1) PARAFERMION CHARACTERS [J].
GRIFFIN, PA ;
HERNANDEZ, OF .
NUCLEAR PHYSICS B, 1991, 356 (01) :287-298
[9]   QED ON A CIRCLE [J].
HETRICK, JE ;
HOSOTANI, Y .
PHYSICAL REVIEW D, 1988, 38 (08) :2621-2624
[10]   HYPERKAHLER METRICS AND SUPERSYMMETRY [J].
HITCHIN, NJ ;
KARLHEDE, A ;
LINDSTROM, U ;
ROCEK, M .
COMMUNICATIONS IN MATHEMATICAL PHYSICS, 1987, 108 (04) :535-589