ON THE STATISTICAL-MECHANICS APPROACH IN THE RANDOM-MATRIX THEORY - INTEGRATED DENSITY-OF-STATES

被引:93
作者
DEMONVEL, AB [1 ]
PASTUR, L [1 ]
SHCHERBINA, M [1 ]
机构
[1] KHARKOV LOW TEMP PHYS & ENGN INST,DIV MATH,KHARKOV 310164,UKRAINE
关键词
RANDOM MATRIX; INTEGRATING DENSITY OF STATES; STATISTICAL MECHANICS; MEAN FIELD-THEORY;
D O I
10.1007/BF02184872
中图分类号
O4 [物理学];
学科分类号
0702 ;
摘要
We consider the ensemble of random symmetric n x n matrices specified by an orthogonal invariant probability distribution. We treat this distribution as a Gibbs measure of a mean-field-type model. This allows us to show that the normalized eigenvalue counting function of this ensemble converges in probability to a nonrandom limit as n --> infinity and that this limiting distribution is the solution of a certain self-consistent equation.
引用
收藏
页码:585 / 611
页数:27
相关论文
共 17 条
[1]  
Mehta M.L., Random Matrices, (1967)
[2]  
Girko V.L., Spectral Theory of Random Matrices, (1990)
[3]  
Haake F., Quantum Signatures of Chaos, (1991)
[4]  
Fernandez R., Frohlich J., Sokal A., Random Walks, Critical Phenomena and Triviality in the Quantum Field Theory, (1992)
[5]  
Brezin E., Itzykson C., Parisi G., Zuber J., Planar diagrams, Communications in Mathematical Physics, 59, pp. 35-51, (1978)
[6]  
Bessis D., Itzykson C., Zuber J., Quantum field theory techniques in graphical enumeration, Adv. Appl. Math., 1, pp. 109-157, (1980)
[7]  
Lechtenfeld D., Ray A., Ray R., Phase diagram and orthogonal polynomials in multiple-well matrix models, International Journal of Modern Physics A, 6, pp. 4491-4515, (1991)
[8]  
Pastur L., On the universality of the level spacing distribution for some ensemble of random matrices, Lett. Math. Phys., 25, pp. 259-265, (1992)
[9]  
Dyson F.J., Statistical theory of the energy levels of the complex system. I–III, J. Math. Phys., 3, pp. 379-414, (1962)
[10]  
Kac M., Uhlenbeck G., Hemmer P., On the van-der-Waals theory of vapor liquid equilibrium, J. Math. Phys., 4, pp. 216-247, (1963)