GLOBAL ANALYSIS OF A SYSTEM OF PREDATOR PREY EQUATIONS

被引:95
作者
CONWAY, ED [1 ]
SMOLLER, JA [1 ]
机构
[1] UNIV MICHIGAN,DEPT MATH,ANN ARBOR,MI 48109
关键词
D O I
10.1137/0146043
中图分类号
O29 [应用数学];
学科分类号
070104 ;
摘要
引用
收藏
页码:630 / 642
页数:13
相关论文
共 21 条
[1]   DYNAMICS OF 2 INTERACTING POPULATIONS [J].
ALBRECHT, F ;
GATZKE, H ;
HADDAD, A ;
WAX, N .
JOURNAL OF MATHEMATICAL ANALYSIS AND APPLICATIONS, 1974, 46 (03) :658-670
[2]   GLOBAL BIFURCATIONS OF PERIODIC ORBITS [J].
ALEXANDER, JC ;
YORKE, JA .
AMERICAN JOURNAL OF MATHEMATICS, 1978, 100 (02) :263-292
[3]   ON THE CONTINUABILITY OF PERIODIC-ORBITS OF PARAMETRIZED 3-DIMENSIONAL DIFFERENTIAL-EQUATIONS [J].
ALEXANDER, JC ;
YORKE, JA .
JOURNAL OF DIFFERENTIAL EQUATIONS, 1983, 49 (02) :171-184
[4]   UNIQUENESS OF A LIMIT-CYCLE FOR A PREDATOR-PREY SYSTEM [J].
CHENG, KS .
SIAM JOURNAL ON MATHEMATICAL ANALYSIS, 1981, 12 (04) :541-548
[5]  
Chow S.N., 2012, METHODS BIFURCATION
[6]  
Freedman H. I., 1980, DETERMINISTIC MATH M
[7]  
Gause GF., 1934, STRUGGLE EXISTENCE, DOI DOI 10.5962/BHL.TITLE.4489
[8]   ENRICHED PREDATOR-PREY SYSTEMS - THEORETICAL STABILITY [J].
ROSENZWEIG, ML .
SCIENCE, 1972, 177 (4052) :904-+
[9]  
Guckenheimer J., 2013, NONLINEAR OSCILLATIO, V42
[10]   MULTIPLE LIMIT-CYCLES IN PREDATOR-PREY MODELS [J].
HASTINGS, A .
JOURNAL OF MATHEMATICAL BIOLOGY, 1981, 11 (01) :51-63