DYNAMIC EUCLIDEAN MINIMUM SPANNING-TREES AND EXTREMA OF BINARY FUNCTIONS

被引:50
作者
EPPSTEIN, D
机构
[1] Department of Information and Computer Science, University of California, Irvine, 92717, CA
关键词
D O I
10.1007/BF02574030
中图分类号
TP301 [理论、方法];
学科分类号
081202 ;
摘要
We maintain the minimum spanning tree of a point set in the plane subject to point insertions and deletions, in amortized time O(n1/2 log2 n) per update operation. We reduce the problem to maintaining bichromatic closest pairs, which we solve in time O(n(epsilon)) per update. Our algorithm uses a novel construction, the ordered nearest neighbor path of a set of points. Our results generalize to higher dimensions, and to fully dynamic algorithms for maintaining minima of binary functions, including the diameter of a point set and the bichromatic farthest pair.
引用
收藏
页码:111 / 122
页数:12
相关论文
共 29 条
[1]  
Agarwal P. K., 1991, Computational Geometry: Theory and Applications, V1, P65, DOI 10.1016/0925-7721(91)90001-U
[2]   EUCLIDEAN MINIMUM SPANNING-TREES AND BICHROMATIC CLOSEST PAIRS [J].
AGARWAL, PK ;
EDELSBRUNNER, H ;
SCHWARZKOPF, O ;
WELZL, E .
DISCRETE & COMPUTATIONAL GEOMETRY, 1991, 6 (05) :407-422
[3]  
AGARWAL PK, 1992, 33RD P IEEE S F COMP, P80
[4]  
BENTLEY JL, 1980, J ALGORITHMS, V0001, P00301
[5]   MAINTENANCE OF GEOMETRIC EXTREMA [J].
DOBKIN, D ;
SURI, S .
JOURNAL OF THE ACM, 1991, 38 (02) :275-298
[6]  
DOBKIN D, 1989, 30TH IEEE S F COMP S, P488
[7]   ITERATED NEAREST NEIGHBORS AND FINDING MINIMAL POLYTOPES [J].
EPPSTEIN, D ;
ERICKSON, J .
DISCRETE & COMPUTATIONAL GEOMETRY, 1994, 11 (03) :321-350
[8]  
Eppstein D., 1992, ORSA Journal on Computing, V4, P360, DOI 10.1287/ijoc.4.4.360
[9]  
EPPSTEIN D, 1991, LECT NOTES COMPUT SC, V519, P392, DOI 10.1007/BFb0028278
[10]  
EPPSTEIN D, 1992, 33 IEEE S FDN COMP S, P60