EXPONENTIAL MODELS, MAXIMUM LIKELIHOOD ESTIMATION, AND HAAR CONDITION

被引:21
作者
CRAIN, BR [1 ]
机构
[1] UNIV OKLAHOMA,DEPT MATH,NORMAN,OK 73069
关键词
D O I
10.2307/2285612
中图分类号
O21 [概率论与数理统计]; C8 [统计学];
学科分类号
020208 ; 070103 ; 0714 ;
摘要
引用
收藏
页码:737 / 740
页数:4
相关论文
共 11 条
[1]  
Anderson T. W., 1958, An introduction to multivariate statistical analysis, V2, P3
[2]  
APOSTOL TM, 1960, MATHEMATICAL ANALYSI
[3]  
BARNDORFFNIELSE.O, 1970, EXPONENTIAL FAMILIES
[4]   CONSISTENCY AND ASYMPTOTIC NORMALITY OF MLES FOR EXPONENTIAL MODELS [J].
BERK, RH .
ANNALS OF MATHEMATICAL STATISTICS, 1972, 43 (01) :193-&
[5]   PRIMITIVE RADON PARTITIONS FOR CYCLIC POLYTOPES [J].
BREEN, M .
ISRAEL JOURNAL OF MATHEMATICS, 1973, 15 (02) :156-157
[6]  
Cheney E. W., 1966, Introduction to Approximation Theory
[7]   ESTIMATION OF DISTRIBUTIONS USING ORTHOGONAL EXPANSIONS [J].
CRAIN, BR .
ANNALS OF STATISTICS, 1974, 2 (03) :454-463
[8]  
KARLIN S, 1953, MEM AM MATH SOC, V12, P1
[9]  
Marsden J., 1974, Elementary classical analysis
[10]  
Rockafellar R. T., 1970, CONVEX ANAL, DOI [10.1515/9781400873173, DOI 10.1515/9781400873173]