COVARIANT LAX OPERATORS AND KAC-MOODY ALGEBRAS

被引:5
作者
DAS, A [1 ]
ROY, S [1 ]
机构
[1] UNIV ROCHESTER,DEPT PHYS & ASTRON,ROCHESTER,NY 14627
关键词
D O I
10.1063/1.529345
中图分类号
O4 [物理学];
学科分类号
0702 ;
摘要
It will be shown that covariantizing the Lax operators with a "time" independent non-Abelian gauge connection leaves the dynamical equations invariant. However, the symmetries associated with the Schrodinger equation in such a case is enlarged. This is used to give a simple derivation of various Kac-Moody algebras associated with such Lax operators.
引用
收藏
页码:869 / 874
页数:6
相关论文
共 34 条
[1]  
ADLER M, 1979, INVENT MATH, V50, P219
[2]   PATH INTEGRAL QUANTIZATION OF THE COADJOINT ORBITS OF THE VIRASORO GROUP AND 2-D GRAVITY [J].
ALEKSEEV, A ;
SHATASHVILI, S .
NUCLEAR PHYSICS B, 1989, 323 (03) :719-733
[3]  
[Anonymous], SOLITONS
[4]   EXTENDED CONFORMAL-SYMMETRIES AND U(1) CURRENTS [J].
BAKAS, I ;
KAKAS, AC .
JOURNAL OF PHYSICS A-MATHEMATICAL AND GENERAL, 1989, 22 (09) :1451-1458
[5]   SYSTEMATIC-APPROACH TO CONFORMAL SYSTEMS WITH EXTENDED VIRASORO SYMMETRIES [J].
BILAL, A ;
GERVAIS, JL .
PHYSICS LETTERS B, 1988, 206 (03) :412-420
[6]  
DAS A, 1990, UR1151 U ROCH PREPR
[7]  
Das A., 1989, INTEGRABLE MODELS, DOI DOI 10.1142/0858
[8]  
Drazin P.G., 1983, SOLITONS
[9]  
Fadeev L D, 1987, HAMILTONIAN METHODS
[10]  
FADEEV LD, 1976, J SOVIET MATH, V5, P334