INVERSE FUNCTION THEOREMS AND SHAPE OPTIMIZATION

被引:6
作者
DOYEN, L
机构
[1] Universite Paris-Dauphine, Paris
关键词
SHAPE OPTIMIZATION; SHAPE GRADIENT; TANGENT CONES; VELOCITY CONES; INVERSE FUNCTION THEOREM; FERMAT RULE; LAGRANGIAN MULTIPLIERS; KUHN-TUCKER MULTIPLIERS;
D O I
10.1137/S036301299222634X
中图分类号
TP [自动化技术、计算机技术];
学科分类号
0812 ;
摘要
In this paper the problem of shape optimization under shape constraints is investigated. Using the shape gradient and shape tangent cones, inverse function theorems are established. With these theorems, the existence of Lagrangian or Kuhn-Tucker multipliers for shape optimization problems with equality or inequality constraints is proved.
引用
收藏
页码:1621 / 1642
页数:22
相关论文
共 16 条
[1]  
Aubin J. P., 1991, VIABILITY THEORY
[2]  
Aubin J.P., 1990, SET-VALUED ANAL, V2, DOI 10.1007/978-0-8176-4848-0
[3]  
CEA J, 1981, OPTIMIZATION DISTRIB, V1, P1005
[4]   EXISTENCE OF A SOLUTION IN A DOMAIN IDENTIFICATION PROBLEM [J].
CHENAIS, D .
JOURNAL OF MATHEMATICAL ANALYSIS AND APPLICATIONS, 1975, 52 (02) :189-219
[5]   VELOCITY METHOD AND LAGRANGIAN FORMULATION FOR THE COMPUTATION OF THE SHAPE HESSIAN [J].
DELFOUR, MC ;
ZOLESIO, JP .
SIAM JOURNAL ON CONTROL AND OPTIMIZATION, 1991, 29 (06) :1414-1442
[6]   SHAPE SENSITIVITY ANALYSIS VIA MIN MAX DIFFERENTIABILITY [J].
DELFOUR, MC ;
ZOLESIO, JP .
SIAM JOURNAL ON CONTROL AND OPTIMIZATION, 1988, 26 (04) :834-862
[7]  
DELFOUR MC, 1989, ANN MAT PUR APPL, V153, pR153
[8]  
DELFOUR MC, 1989, 5TH S CONTR DISTR PA, P85
[9]  
DELFOUR MC, 1989, STABILIZATION FLEXIB
[10]  
DELFOUR MC, 1990, CRM1669 U MONTR CTR