WHAT CAN WE LEARN FROM HOMOCLINIC ORBITS IN CHAOTIC DYNAMICS

被引:116
作者
GASPARD, P
NICOLIS, G
机构
关键词
D O I
10.1007/BF01019496
中图分类号
O4 [物理学];
学科分类号
0702 ;
摘要
引用
收藏
页码:499 / 518
页数:20
相关论文
共 18 条
  • [1] Afraimovich V. S., 1977, Soviet Physics - Doklady, V22, P253
  • [2] Andronov A. A., 1971, THEORY BIFURCATIONS
  • [3] OSCILLATORS WITH CHAOTIC BEHAVIOR - AN ILLUSTRATION OF A THEOREM BY SHILNIKOV
    ARNEODO, A
    COULLET, P
    TRESSER, C
    [J]. JOURNAL OF STATISTICAL PHYSICS, 1982, 27 (01) : 171 - 182
  • [4] Arnold VI, 1980, CHAPITRES SUPPLEMENT
  • [5] BAESENS C, UNPUB Z PHYSIK B
  • [6] COLLET P, 1981, ITERATIVE MAPS INTER
  • [7] QUANTITATIVE UNIVERSALITY FOR A CLASS OF NON-LINEAR TRANSFORMATIONS
    FEIGENBAUM, MJ
    [J]. JOURNAL OF STATISTICAL PHYSICS, 1978, 19 (01) : 25 - 52
  • [8] ANALYSIS OF FLOW HYSTERESIS BY A ONE-DIMENSIONAL MAP
    FRASER, S
    KAPRAL, R
    [J]. PHYSICAL REVIEW A, 1982, 25 (06): : 3223 - 3233
  • [9] GASPARD P, 1982, MEMOIRE LICENCE
  • [10] GUCKENHEIMER J, 1980, PROGR MATH, V8