ESTIMATING A MULTIDIMENSIONAL EXTREME-VALUE DISTRIBUTION

被引:27
作者
EINMAHL, JHJ [1 ]
DEHAAN, L [1 ]
HUANG, X [1 ]
机构
[1] ERASMUS UNIV ROTTERDAM,3000 DR ROTTERDAM,NETHERLANDS
关键词
ASYMPTOTIC NORMALITY; CONSISTENCY; ESTIMATION; MULTIVARIATE EXTREMES;
D O I
10.1006/jmva.1993.1069
中图分类号
O21 [概率论与数理统计]; C8 [统计学];
学科分类号
020208 ; 070103 ; 0714 ;
摘要
Let F and G be multivariate probability distribution functions, each with equal one dimensional marginals, such that there exists a sequence of constants an > 0, n ∈ N, with [formula] for all continuity points (x1, …, xd) of G. The distribution function G is characterized by the extreme-value index (determining the marginals) and the so-called angular measure (determining the dependence structure). In this paper, a non-parametric estimator of G, based on a random sample from F, is proposed. Consistency as well as asymptotic normality are proved under certain regularity conditions. © 1993 Academic Press, Inc.
引用
收藏
页码:35 / 47
页数:13
相关论文
共 19 条
[1]  
Araujo A, 1980, CENTRAL LIMIT THEORE
[2]  
Billingsley P, 1968, CONVERGENCE PROBABIL
[3]  
DEHAAN L, 1977, Z WAHRSCHEINLICHKEIT, V40, P317
[4]  
DEHAAN L, 1985, 45TH P SESS ISI AMST
[5]   ON THE NON-PARAMETRIC ESTIMATION OF THE BIVARIATE EXTREME-VALUE DISTRIBUTIONS [J].
DEHEUVELS, P ;
DEOLIVEIRA, JT .
STATISTICS & PROBABILITY LETTERS, 1989, 8 (04) :315-323
[6]   ON THE LIMITING BEHAVIOR OF THE PICKANDS ESTIMATOR FOR BIVARIATE EXTREME-VALUE DISTRIBUTIONS [J].
DEHEUVELS, P .
STATISTICS & PROBABILITY LETTERS, 1991, 12 (05) :429-439
[7]  
DEHEUVELS P, 1980, C MATH SOC JANOS BOL, V32, P183
[8]  
Deheuvels P., 1978, PUBL I STAT U PARIS, V23, P1
[9]   INTRINSIC ESTIMATION OF THE DEPENDENCE STRUCTURE FOR BIVARIATE EXTREMES [J].
DEOLIVEIRA, JT .
STATISTICS & PROBABILITY LETTERS, 1989, 8 (03) :213-218
[10]  
GEFFROY J, 1958, PUBL I STAT U PARIS, V7, P37